Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Headache ; 61(3): 536-545, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33724462

RESUMO

OBJECTIVE: Our objective is to explore whether blood-cerebrospinal fluid (CSF) barrier biomarkers differ in episodic migraine (EM) or chronic migraine (CM) from controls. BACKGROUND: Reports of blood-brain barrier and blood-cerebrospinal fluid barrier (BCSFB) disruption in migraine vary. Our hypothesis is that investigation of biomarkers associated with blood, CSF, brain, cell adhesion, and inflammation will help elucidate migraine pathophysiology. METHODS: We recruited 14 control volunteers without headache disorders and 42 individuals with EM or CM as classified using the International Classification of Headache Disorders, 3rd edition, criteria in a cross-sectional study located at our Pasadena and Stanford headache research centers in California. Blood and lumbar CSF samples were collected once from those diagnosed with CM or those with EM during two states: during a typical migraine, before rescue therapy, with at least 6/10 level of pain (ictal); and when migraine free for at least 48 h (interictal). The average number of headaches per month over the previous year was estimated by those with EM; this enabled comparison of biomarker changes between controls and three headache frequency groups: <2 per month, 2-14 per month, and CM. Blood and CSF biomarkers were determined using antibody-based methods. RESULTS: Antimigraine medication was only taken by the EM and CM groups. Compared to controls, the migraine group had significantly higher mean CSF-blood quotients of albumin (Qalb : mean ± standard deviation (SD): 5.6 ± 2.3 vs. 4.1 ± 1.9) and fibrinogen (Qfib mean ± SD: 1615 ± 99.0 vs. 86.1 ± 55.0). Mean CSF but not plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were significantly higher in those with more frequent migraine: (4.5 ng/mL ± 1.1 in those with <2 headache days a month; 5.5 ± 1.9 with 2-14 days a month; and 7.1 ± 2.9 in CM), while the Qfib ratio was inversely related to headache frequency. We did not find any difference in individuals with EM or CM from controls for CSF cell count, total protein, matrix metalloproteinase-9, soluble platelet-derived growth factor receptor ß, tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-6, IL-8, IL-10, or C-reactive protein. CONCLUSIONS: The higher Qalb and Qfib ratios may indicate that the transport of these blood-derived proteins is disturbed at the BCSFB in persons with migraine. These changes most likely occur at the choroid plexus epithelium, as there are no signs of typical endothelial barrier disruption. The most striking finding in this hypothesis-generating study of migraine pathophysiology is that sVCAM-1 levels in CSF may be a biomarker of higher frequency of migraine and CM. An effect from migraine medications cannot be excluded, but there is no known mechanism to suggest they have a role in altering the CSF biomarkers.


Assuntos
Barreira Hematoencefálica , Fibrinogênio/líquido cefalorraquidiano , Inflamação , Transtornos de Enxaqueca , Molécula 1 de Adesão de Célula Vascular/líquido cefalorraquidiano , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , Feminino , Humanos , Inflamação/sangue , Inflamação/líquido cefalorraquidiano , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/sangue , Transtornos de Enxaqueca/líquido cefalorraquidiano , Transtornos de Enxaqueca/fisiopatologia
2.
PLoS One ; 15(5): e0232785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469871

RESUMO

BACKGROUND: Alzheimer's disease (AD) pathology precedes symptoms and its detection can identify at-risk individuals who may benefit from early treatment. Since the retinal nerve fiber layer (RNFL) is depleted in established AD, we tested whether its thickness can predict whether cognitively healthy (CH) individuals have a normal or pathological cerebrospinal fluid (CSF) Aß42 (A) and tau (T) ratio. METHODS: As part of an ongoing longitudinal study, we enrolled CH individuals, excluding those with cognitive impairment and significant ocular pathology. We classified the CH group into two sub-groups, normal (CH-NAT, n = 16) or pathological (CH-PAT, n = 27), using a logistic regression model from the CSF AT ratio that identified >85% of patients with a clinically probable AD diagnosis. Spectral-domain optical coherence tomography (OCT) was acquired for RNFL, ganglion cell-inner plexiform layer (GC-IPL), and macular thickness. Group differences were tested using mixed model repeated measures and a classification model derived using multiple logistic regression. RESULTS: Mean age (± standard deviation) in the CH-PAT group (n = 27; 75.2 ± 8.4 years) was similar (p = 0.50) to the CH-NAT group (n = 16; 74.1 ± 7.9 years). Mean RNFL (standard error) was thinner in the CH-PAT group by 9.8 (2.7) µm; p < 0.001. RNFL thickness classified CH-NAT vs. CH-PAT with 87% sensitivity and 56.3% specificity. CONCLUSIONS: Our retinal data predict which individuals have CSF biomarkers of AD pathology before cognitive deficits are detectable with 87% sensitivity. Such results from easy-to-acquire, objective and non-invasive measurements of the RNFL merit further study of OCT technology to monitor or screen for early AD pathology.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Disfunção Cognitiva/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Amiloidose/líquido cefalorraquidiano , Amiloidose/diagnóstico por imagem , Amiloidose/genética , Amiloidose/patologia , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Disco Óptico/diagnóstico por imagem , Disco Óptico/metabolismo , Disco Óptico/patologia , Retina/diagnóstico por imagem , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica , Proteínas tau/líquido cefalorraquidiano
3.
PLoS One ; 14(6): e0218041, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31173612

RESUMO

There is strong evidence that neuronal hyper-excitability underlies migraine, and may or may not be preceded by cortical spreading depression. However, the mechanisms for cortical spreading depression and/or migraine are not established. Previous studies reported that cerebrospinal fluid (CSF) [Na+] is higher during migraine, and that higher extracellular [Na+] leads to hyper-excitability. We raise the hypothesis that altered choroid plexus Na+, K+-ATPase activity can cause both migraine phenomena: inhibition raises CSF [K+] and initiates cortical spreading depression, while activation raises CSF [Na+] and causes migraine. In this study, we examined levels of specific Na+, K+-ATPase inhibitors, endogenous ouabain-like compounds (EOLC), in CSF from migraineurs and controls. CSF EOLC levels were significantly lower during ictal migraine (0.4 nM +/- 0.09) than from either controls (1.8 nM +/- 0.4) or interictal migraineurs (3.1 nM +/- 1.9). Blood plasma EOLC levels were higher in migraineurs than controls, but did not differ between ictal and interictal states. In a Sprague-Dawley rat model of nitroglycerin-triggered central sensitization, we changed the concentrations of EOLC and CSF sodium, and measured aversive mechanical threshold (von Frey hairs), trigeminal nucleus caudalis activation (cFos), and CSF [Na+] (ultra-high field 23Na MRI). Animals were sensitized by three independent treatments: intraperitoneal nitroglycerin, immunodepleting EOLC from cerebral ventricles, or cerebroventricular infusion of higher CSF [Na+]. Conversely, nitroglycerin-triggered sensitization was prevented by either vascular or cerebroventricular delivery of the specific Na+, K+-ATPase inhibitor, ouabain. These results affirm our hypothesis that higher CSF [Na+] is linked to human migraine and to a rodent migraine model, and demonstrate that EOLC regulates them both. Our data suggest that altered choroid plexus Na+, K+-ATPase activity is a common source of these changes, and may be the initiating mechanism in migraine.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Íons/metabolismo , Transtornos de Enxaqueca/etiologia , Transtornos de Enxaqueca/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Adolescente , Adulto , Idoso , Animais , Plexo Corióideo/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ouabaína/metabolismo , Ratos , Ratos Sprague-Dawley , Adulto Jovem
4.
Headache ; 50(3): 459-78, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19845787

RESUMO

BACKGROUND: Cerebrospinal fluid sodium concentration ([Na(+)](csf)) increases during migraine, but the cause of the increase is not known. OBJECTIVE: Analyze biochemical pathways that influence [Na(+)](csf) to identify mechanisms that are consistent with migraine. METHOD: We reviewed sodium physiology and biochemistry publications for links to migraine and pain. RESULTS: Increased capillary endothelial cell (CEC) Na(+), K(+), -ATPase transporter (NKAT) activity is probably the primary cause of increased [Na(+)](csf). Physiological fluctuations of all NKAT regulators in blood, many known to be involved in migraine, are monitored by receptors on the luminal wall of brain CECs; signals are then transduced to their abluminal NKATs that alter brain extracellular sodium ([Na(+)](e)) and potassium ([K(+)](e)). CONCLUSIONS: We propose a theoretical mechanism for aura and migraine when NKAT activity shifts outside normal limits: (1) CEC NKAT activity below a lower limit increases [K(+)](e), facilitates cortical spreading depression, and causes aura; (2) CEC NKAT activity above an upper limit elevates [Na(+)](e), increases neuronal excitability, and causes migraine; (3) migraine-without-aura may arise from CEC NKAT over-activity without requiring a prior decrease in activity and its consequent spreading depression; (4) migraine triggers disturb, and treatments improve, CEC NKAT homeostasis; (5) CEC NKAT-induced regulation of neural and vasomotor excitability coordinates vascular and neuronal activities, and includes occasional pathology from CEC NKAT-induced apoptosis or cerebral infarction.


Assuntos
Artérias Cerebrais/metabolismo , Artérias Cerebrais/fisiopatologia , Células Endoteliais/metabolismo , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Líquido Cefalorraquidiano/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Humanos , Transtornos de Enxaqueca/líquido cefalorraquidiano , Potássio/análise , Potássio/líquido cefalorraquidiano , Sódio/análise , Sódio/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA