Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 9(59): 31422-31431, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30140380

RESUMO

Photodynamic therapy (PDT) utilize a photosensitizing agent and light for cancer therapy. It exerts anti-cancer effect mainly by inducing vascular occlusion at the irradiated site. By controlling the irradiation area, PDT can be used in a tumor-specific manner. However, the non-specific cellular damage in the surrounding normal tissue is still a serious concern. Photoimmunotherapy (PIT) is a new type of targeted cancer therapy that uses an antibody-photon absorber conjugate (APC). The superiority of PIT to PDT is the improved target specificity, thereby reducing the damage to normal tissues. Here, we developed a novel APC targeting epithelial cell adhesion molecule (EpCAM) as well as a negative control APC that does not bind to the EpCAM antigen. Our in vitro analysis of APC cytotoxicity demonstrated that the EpCAM APC, but not the negative control, was cytotoxic to EpCAM expressing COLO 205 cells after photoirradiation, suggesting that the cytotoxicity is antigen-dependent. However, in our in vivo analysis using a mouse xenograft tumor model, decreased volume of the tumors was observed in all the mice treated with irradiation, regardless of whether they were treated with the EpCAM APC or the negative control. Detailed investigation of the mechanism of these in vivo reveal that both APCs induce vascular occlusion at the irradiation site. Furthermore, the level of vascular occlusion was correlated with the blood concentration of APC, not the tumor concentration. These results imply that, similar to PDT, PIT can also induce non-targeted vascular occlusion and further optimization is required before widespread clinical use.

2.
Cancer Med ; 6(4): 798-808, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28211613

RESUMO

Carcinoembryonic antigen (CEA) is a classic tumor-specific antigen that is overexpressed in several cancers, including gastric cancer. Although some anti-CEA antibodies have been tested, to the best of our knowledge, there are currently no clinically approved anti-CEA antibody therapies. Because of this, we have created the novel anti-CEA antibody, 15-1-32, which exhibits stronger binding to membrane-bound CEA on cancer cells than existing anti-CEA antibodies. 15-1-32 also shows poor affinity for soluble CEA; thus, the binding activity of 15-1-32 to membrane-bound CEA is not influenced by soluble CEA. In addition, we constructed a 15-1-32-monomethyl auristatin E conjugate (15-1-32-vcMMAE) to improve the therapeutic efficacy of 15-1-32. 15-1-32-vcMMAE showed enhanced antitumor activity against gastric cancer cell lines. Unlike with existing anti-CEA antibody therapies, antitumor activity of 15-1-32-vcMMAE was retained in the presence of high concentrations of soluble CEA.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígeno Carcinoembrionário/imunologia , Oligopeptídeos/química , Neoplasias Gástricas/tratamento farmacológico , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA