Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026749

RESUMO

NK cells express activating receptors that signal through ITAM-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of Ca 2 + influx. While all immature and mature human NK cells co-express SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robust Ca + + influx after cross-linking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 but mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished TCR-induced Ca 2 + flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting CAR and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.

2.
J Leukoc Biol ; 113(1): 27-40, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36822164

RESUMO

Natural killer (NK) cells are innate lymphocytes capable of mediating immune responses without prior sensitization. NK cells express Fc-gamma receptors (FcγRs) that engage the Fc region of IgG. Studies investigating the role of FcγRs on mouse NK cells have been limited due to lack specific reagents. In this study, we characterize the expression and biological consequences of activating mouse NK cells through their FcγRs. We demonstrate that most NK cells express the activating CD16 receptor, and a subset of NK cells also expresses the inhibitory CD32b receptor. Critically, these FcγRs are functional on mouse NK cells and can modulate antibody-mediated responses. We also characterized mice with conditional knockout alleles of Fcgr3 (CD16) or Fcgr2b (CD32b) in the NK and innate lymphoid cell (ILC) lineage. NK cells in these mice did not reveal any developmental defects and were responsive to cross-linking activating NK receptors, cytokine stimulation, and killing of YAC-1 targets. Importantly, CD16-deficient NK cells failed to induce antibody-directed cellular cytotoxicity of antibody-coated B-cell lymphomas in in vitro assays. In addition, we demonstrate the important role of CD16 on NK cells using an in vivo model of cancer immunotherapy using anti-CD20 antibody treatment of B-cell lymphomas.


Assuntos
Imunidade Inata , Linfoma de Células B , Camundongos , Animais , Receptores de IgG/metabolismo , Citotoxicidade Imunológica , Células Matadoras Naturais , Anticorpos/metabolismo
3.
Cell ; 180(4): 749-763.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059780

RESUMO

Immune responses in diverse tissue sites are critical for protective immunity and homeostasis. Here, we investigate how tissue localization regulates the development and function of human natural killer (NK) cells, innate lymphocytes important for anti-viral and tumor immunity. Integrating high-dimensional analysis of NK cells from blood, lymphoid organs, and mucosal tissue sites from 60 individuals, we identify tissue-specific patterns of NK cell subset distribution, maturation, and function maintained across age and between individuals. Mature and terminally differentiated NK cells with enhanced effector function predominate in blood, bone marrow, spleen, and lungs and exhibit shared transcriptional programs across sites. By contrast, precursor and immature NK cells with reduced effector capacity populate lymph nodes and intestines and exhibit tissue-resident signatures and site-specific adaptations. Together, our results reveal anatomic control of NK cell development and maintenance as tissue-resident populations, whereas mature, terminally differentiated subsets mediate immunosurveillance through diverse peripheral sites. VIDEO ABSTRACT.


Assuntos
Envelhecimento/imunologia , Células Matadoras Naturais/citologia , Linfopoese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Antígenos CD/metabolismo , Células Cultivadas , Criança , Feminino , Humanos , Imunidade Inata , Mucosa Intestinal/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Pulmão/citologia , Linfonodos/citologia , Masculino , Pessoa de Meia-Idade , Baço/citologia
4.
Blood ; 116(19): 3865-74, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20733159

RESUMO

Natural killer (NK) cells are innate immune lymphocytes that express a heterogeneous repertoire of germline-encoded receptors and undergo a distinct pattern of maturation. CD57 is a marker of terminal differentiation on human CD8(+) T cells. Very few newborn or fetal NK cells express CD57; however, the frequency of CD57-bearing NK cells increases with age. We assessed the transcriptional, phenotypic, and functional differences between CD57(+) and CD57(-) NK cells within the CD56(dim) mature NK subset. CD57(+) NK cells express a repertoire of NK-cell receptors, suggestive of a more mature phenotype, and proliferate less when stimulated with target cells and/or cytokines. By contrast, a higher frequency of CD57(+) NK cells produced interferon-γ and demonstrated more potent lytic activity when these cells were stimulated through the activating receptor CD16; however, they are less responsive to stimulation by interleukin-12 and interleukin-18. Finally, CD57 expression is induced on CD57(-)CD56(dim) NK cells after activation by interleukin-2. A combination of a mature phenotype, a higher cytotoxic capacity, a higher sensitivity to stimulation via CD16, with a decreased responsiveness to cytokines, and a decreased capacity to proliferate suggest that CD57(+) NK cells are highly mature and might be terminally differentiated.


Assuntos
Antígeno CD56/metabolismo , Antígenos CD57/metabolismo , Células Matadoras Naturais/classificação , Células Matadoras Naturais/imunologia , Receptores de IgG/metabolismo , Adulto , Morte Celular , Diferenciação Celular , Proliferação de Células , Citotoxicidade Imunológica , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Interferon gama/biossíntese , Interleucina-12/farmacologia , Interleucina-18/farmacologia , Células Matadoras Naturais/citologia , Ativação Linfocitária
5.
J Gene Med ; 11(9): 743-53, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19554624

RESUMO

BACKGROUND: Transplantation of stem cells from various sources into infarcted hearts has the potential to promote myocardial regeneration. However, the regenerative capacity is limited partly as a result of the low survival rate of the transplanted cells in the ischemic myocardium. In the present study, we tested the hypothesis that combining cell and angiogenic gene therapies would provide additive therapeutic effects via co-injection of bone marrow-derived mesenchymal stem cells (MSCs) with an adeno-associated viral vector (AAV), MLCVEGF, which expresses vascular endothelial growth factor (VEGF) in a cardiac-specific and hypoxia-inducible manner. METHODS: MSCs isolated from transgenic mice expressing green fluorescent protein and MLCVEGF packaged in AAV serotype 1 capsid were injected into mouse hearts at the border of ischemic area, immediately after occlusion of the left anterior descending coronary, individually or together. Engrafted cells were detected and quantified by real-time polymerase chain reaction and immunostaining. Angiogenesis and infarct size were analyzed on histological and immunohistochemical stained sections. Cardiac function was analyzed by echocardiography. RESULTS: We found that co-injection of AAV1-MLCVEGF with MSCs reduced cell loss. Although injection of MSCs and AAV1-MLCVEGF individually improved cardiac function and reduced infarct size, co-injection of MSC and AAV1-MLCVEGF resulted in the best improvement in cardiac function as well as the smallest infarct among all groups. Moreover, injection of AAV1-MLCVEGF induced neovasculatures. Nonetheless, injection of MSCs attracted endogenous stem cell homing and increased scar thickness. CONCLUSIONS: Co-injection of MLCVEGF and MSCs in ischemic hearts can result in better cardiac function and MSC survival, compared to their individual injections, as a result of the additive effects of each therapy.


Assuntos
Terapia Genética , Infarto do Miocárdio/terapia , Neovascularização Fisiológica/genética , Transplante de Células-Tronco , Fator A de Crescimento do Endotélio Vascular/genética , Adenoviridae/genética , Animais , Sequência de Bases , Western Blotting , Diferenciação Celular , Separação Celular , Primers do DNA , Feminino , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/cirurgia
6.
Int J Cardiol ; 133(2): 191-7, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18295361

RESUMO

Vascular endothelial growth factor (VEGF) is a key angiogenic factor and has been used experimentally for induction of neovasculature in ischemic myocardium. However, blood vessels induced by VEGF are immature. Angiopoietin-1 (ang-1) has the ability to recruit and sustain periendothelial support cells and promote vascular maturation. Thus, co-expression of the two may yield a better result than expression of either one alone. Two adeno-associated viral vectors (AAV), CMVVEGF and CMVang-1 with the CMV promoter driving VEGF or ang-1 gene expression, respectively, were injected into ischemic mouse hearts individually or together in different ratios. The results show that co-injected groups had more capillaries than the CMVang-1 group and similar densities of capillaries and alpha-actin positive vessels as the CMVVEGF group. Neovasculature induced by CMVVEGF was leaky. In contrast, neovasculature in CMVang-1-injected or CMVVEGF and CMVang-1 co-injected hearts was less leaky than that in CMVVEGF-injected hearts. The group that received CMVang-1 and CMVVEGF in a 1:1 ratio had the smallest infarct size and best cardiac function and regional wall movement among all the groups. We conclude that ang-1 and VEGF can compensate for each others' shortcomings and yield a better therapeutic effect by acting together.


Assuntos
Angiopoietina-1/biossíntese , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Isquemia Miocárdica/terapia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Dependovirus , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos , Neovascularização Fisiológica
7.
Biochem Biophys Res Commun ; 376(2): 419-22, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18789891

RESUMO

Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infarcted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16(INK), p21 and p19(ARF). VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.


Assuntos
Citoproteção , Coração/fisiopatologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/terapia
8.
Proc Natl Acad Sci U S A ; 101(46): 16280-5, 2004 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-15534198

RESUMO

It has been shown that the adeno-associated virus (AAV) vector can deliver the VEGF gene efficiently into the ischemic mouse myocardium. However, the AAV genomes can be found in extracardiac organs after intramyocardial injection. To limit unwanted VEGF expression in organs other than the heart, we tested the use of the cardiac myosin light chain 2v (MLC-2v) promoter and the hypoxia-response element to mediate cardiac-specific and hypoxia-inducible VEGF expression. An AAV vector, MLCVEGF, with 250 bp of the MLC-2v promoter and nine copies of the hypoxia-response element driving VEGF expression, was constructed. Gene expression was studied in vitro by infection of rat cardiomyocytes, rat skeletal myocytes, and mouse fibroblasts with the vector and in vivo by direct injection of the vector into normal and ischemic mouse hearts. With MLCVEGF infection, VEGF expression was higher in cardiomyocytes than the other two cell lines and was hypoxiainducible. VEGF expression was also higher in ischemic hearts than in normal hearts. No VEGF expression was detectable in organs with detectable MLCVEGF vectors other than the heart. MLCVEGF-injected ischemic hearts had more capillaries and small vessels around the injection site, smaller infarct size, and better cardiac function than the negative controls. Hence, MLCVEGF can mediate cardiac-specific and hypoxia-inducible VEGF expression, neoangiogenesis, infarct-size reduction, and cardiac functional improvement.


Assuntos
Dependovirus/genética , Vetores Genéticos , Isquemia Miocárdica/terapia , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Sequência de Bases , Hipóxia Celular/genética , Linhagem Celular , DNA Complementar/genética , Feminino , Expressão Gênica , Terapia Genética , Humanos , Masculino , Camundongos , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Células NIH 3T3 , Neovascularização Fisiológica , Especificidade de Órgãos , Ratos
9.
Proc Natl Acad Sci U S A ; 99(14): 9480-5, 2002 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-12084814

RESUMO

Intramyocardial injection of genes encoding angiogenic factors could provide a useful approach for the treatment of ischemic heart disease. However, uncontrolled expression of angiogenic factors in vivo may cause some unwanted side effects, such as hemangioma formation, retinopathy, and arthritis. It may also induce occult tumor growth and artherosclerotic plaque progression. Because hypoxia-inducible factor 1 is up-regulated in a variety of hypoxic conditions and it regulates gene expression by binding to a cis-acting hypoxia-responsive element (HRE), we propose to use HRE, found in the 3' end of the erythropoietin gene to control gene expression in ischemic myocardium. A concatemer of nine copies of the consensus sequence of HRE isolated from the erythropoietin enhancer was used to mediate hypoxia induction. We constructed two adeno-associated viral vectors in which LacZ and vascular endothelial growth factor (VEGF) expressions were controlled by this HRE concatemer and a minimal simian virus 40 promoter. Both LacZ and VEGF expression were induced by hypoxia and/or anoxia in several cell lines transduced with these vectors. The functions of these vectors in ischemic myocardium were tested by injecting them into normal and ischemic mouse myocardium created by occlusion of the left anterior descending coronary artery. The expression of LacZ gene was induced eight times and of VEGF 20 times in ischemic myocardium compared with normal myocardium after the viral vector transduction. Hence, HRE is a good candidate for the control of angiogenic factor gene expression in ischemic myocardium.


Assuntos
Dependovirus/genética , Vetores Genéticos , Isquemia Miocárdica/terapia , Fatores de Transcrição , Células 3T3 , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Crescimento Endotelial/genética , Eritropoetina/genética , Expressão Gênica , Terapia Genética , Células HeLa , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Óperon Lac , Linfocinas/genética , Camundongos , Isquemia Miocárdica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA