RESUMO
Type 1 diabetes mellitus (T1DM) affects 8.4 million people worldwide, with patients primarily relying on exogenous insulin injections to maintain blood glucose levels. Islet transplantation via the portal vein has allowed for the direct internal release of insulin by glucose-sensitive islets. However, this method might not be desirable for future cell therapy transplanting pluripotent stem cell-derived ß cells, facing challenges including difficulties in cell retrieval and graft loss due to the instant blood-mediated inflammatory reaction (IBMIR). Here, we established a subcutaneous transplantation protocol using an atelocollagen sponge as a scaffold. While the subcutaneous site has many advantages, the lack of a vascular bed limits its application. To address this issue, we performed angiogenesis stimulation at the transplantation site using bFGF absorbed in a gelatin sponge (Spongel), significantly improving the microvascular area. Our in vivo experiments also revealed angiogenesis stimulation is crucial for reversing hyperglycemia in streptozotocin (STZ)-induced diabetic mice. In addition to the angiogenic treatment, an atelocollagen sponge is used to carry the islets and helps avoid graft leakage. With 800 mouse islets delivered by the atelocollagen sponge, the STZ-induced diabetic mice showed a reversal of hyperglycemia and normalized glucose intolerance. Their normoglycemia was maintained until the graft was removed. Analysis of the harvested islet grafts exhibited a high vascularization and preserved morphologies, suggesting that using an atelocollagen sponge as a scaffold helps maintain the viability of the islet grafts.
Assuntos
Colágeno , Diabetes Mellitus Experimental , Hiperglicemia , Transplante das Ilhotas Pancreáticas , Alicerces Teciduais , Animais , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Experimental/terapia , Camundongos , Alicerces Teciduais/química , Hiperglicemia/terapia , Colágeno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ilhotas PancreáticasRESUMO
TIF1ß/KAP1/TRIM28, a chromatin modulator, both represses and activates the transcription of genes in normal and malignant cells. Analyses of datasets on leukemia patients revealed that the expression level of TIF1ß was increased in patients with chronic myeloid leukemia at the blast crisis and acute myeloid leukemia. We generated a BCR::ABL1 conditional knock-in (KI) mouse model, which developed aggressive myeloid leukemia, and demonstrated that the deletion of the Tif1ß gene inhibited the progression of myeloid leukemia and showed longer survival than that in BCR::ABL1 KI mice, suggesting that Tif1ß drove the progression of BCR::ABL1-induced leukemia. In addition, the deletion of Tif1ß sensitized BCR::ABL1 KI leukemic cells to dasatinib. The deletion of Tif1ß decreased the expression levels of TIF1ß-target genes and chromatin accessibility peaks enriched with the Fosl1-binding motif in BCR::ABL1 KI stem cells. TIF1ß directly bound to the promoters of proliferation genes, such as FOSL1, in human BCR::ABL1 cells, in which TIF1ß and FOSL1 bound to adjacent regions of chromatin. Since the expression of Fosl1 was critical for the enhanced growth of BCR::ABL1 KI cells, Tif1ß and Fosl1 interacted to activate the leukemic transcriptional program in and cellular function of BCR::ABL1 KI stem cells and drove the progression of myeloid leukemia.
Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteína 28 com Motivo Tripartido , Animais , Humanos , Camundongos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Transcrição Gênica , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genéticaRESUMO
The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.
Assuntos
Caseína Quinase II , Cromatina , Proteína HMGA2 , Células-Tronco Hematopoéticas , Camundongos Knockout , Proteína HMGA2/metabolismo , Proteína HMGA2/genética , Animais , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Humanos , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Cromatina/metabolismo , Cromatina/genética , Fator de Necrose Tumoral alfa/metabolismo , Hematopoese , Estresse Fisiológico , Fluoruracila/farmacologia , Regeneração , Fosforilação , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Camundongos Endogâmicos C57BLAssuntos
Antígeno CD11c , Neoplasias Cutâneas , Quinases Ativadas por p21 , Animais , Camundongos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Antígeno CD11c/metabolismo , Antígeno CD11c/genética , Carcinogênese/genética , Modelos Animais de Doenças , Camundongos KnockoutRESUMO
Osteosarcoma is rare but is the most common bone tumor. Diagnostic tools such as magnetic resonance imaging development of chemotherapeutic agents have increased the survival rate in osteosarcoma patients, although 5-year survival has plateaued at 70%. Thus, development of new treatment approaches is needed. Here, we report that IL-17, a proinflammatory cytokine, increases osteosarcoma mortality in a mouse model with AX osteosarcoma cells. AX cell transplantation into wild-type mice resulted in 100% mortality due to ectopic ossification and multi-organ metastasis. However, AX cell transplantation into IL-17-deficient mice significantly prolonged survival relative to controls. CD4-positive cells adjacent to osteosarcoma cells express IL-17, while osteosarcoma cells express the IL-17 receptor IL-17RA. Although AX cells can undergo osteoblast differentiation, as can patient osteosarcoma cells, IL-17 significantly inhibited that differentiation, indicating that IL-17 maintains AX cells in the undifferentiated state seen in malignant tumors. By contrast, IL-17RA-deficient mice transplanted with AX cells showed survival comparable to wild-type mice transplanted with AX cells. Biopsy specimens collected from osteosarcoma patients showed higher expression of IL-17RA compared to IL-17. These findings suggest that IL-17 is essential to maintain osteosarcoma cells in an undifferentiated state and could be a therapeutic target for suppressing tumorigenesis.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Camundongos , Animais , Receptores de Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Osteossarcoma/patologia , Diferenciação Celular , Neoplasias Ósseas/patologiaRESUMO
Liver fibrosis results from chronic liver injury triggered by factors such as viral infection, excess alcohol intake, and lipid accumulation. However, the mechanisms underlying liver fibrosis are not fully understood. Here, we demonstrate that the expression of fibroblast growth factor 18 (Fgf18) is elevated in mouse livers following the induction of chronic liver fibrosis models. Deletion of Fgf18 in hepatocytes attenuates liver fibrosis; conversely, overexpression of Fgf18 promotes liver fibrosis. Single-cell RNA sequencing reveals that overexpression of Fgf18 in hepatocytes results in an increase in the number of Lrat+ hepatic stellate cells (HSCs), thereby inducing fibrosis. Mechanistically, FGF18 stimulates the proliferation of HSCs by inducing the expression of Ccnd1. Moreover, the expression of FGF18 is correlated with the expression of profibrotic genes, such as COL1A1 and ACTA2, in human liver biopsy samples. Thus, FGF18 promotes liver fibrosis and could serve as a therapeutic target to treat liver fibrosis.
Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Animais , Humanos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fibrose , Proliferação de CélulasRESUMO
Meiosis is differently regulated in males and females. In females, germ cells initiate meiosis within a limited time period in the fetal ovary and undergo a prolonged meiotic arrest until puberty. However, how meiosis initiation is coordinated with the cell cycle to coincide with S phase remains elusive. Here, we demonstrate that STRA8 binds to RB via the LXCXE motif. Mutation of the RB-binding site of STRA8 in female mice delays meiotic entry, which consequently delays progression of meiotic prophase and leads to precocious depletion of the oocyte pool. Single-cell RNA-sequencing analysis reveals that the STRA8-RB interaction is required for S phase entry and meiotic gene activation, ensuring precise timing of meiosis initiation in oocytes. Strikingly, the results suggest STRA8 could sequester RB from E2F during pre-meiotic G1/S transition. This study highlights the gene regulatory mechanisms underlying the female-specific mode of meiotic initiation in mice.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Meiose , Animais , Feminino , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Células Germinativas/metabolismo , Maturidade Sexual , Proteína do RetinoblastomaRESUMO
Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a noncoding region and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases. Here, we show that a CWG repeat DNA-targeting compound, cyclic pyrrole-imidazole polyamide (CWG-cPIP), suppressed the pathogenesis of coding and noncoding CWG repeat diseases. CWG-cPIP bound to the hairpin form of mismatched CWG DNA, interfering with transcription elongation by RNA polymerase through a preferential activity toward repeat-expanded DNA. We found that CWG-cPIP selectively inhibited pathogenic mRNA transcripts from expanded CWG repeats, reducing CUG RNA foci and polyglutamine accumulation in cells from patients with myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Treatment with CWG-cPIP ameliorated behavioral deficits in adeno-associated virus-mediated CWG repeat-expressing mice and in a genetic mouse model of HD, without cytotoxicity or off-target effects. Together, we present a candidate compound that targets expanded CWG repeat DNA independently of its genomic location and reduces both pathogenic RNA and protein levels. CWG-cPIP may be used for the treatment of CWG repeat diseases and improvement of clinical outcomes.
Assuntos
Doença de Huntington , Distrofia Miotônica , Humanos , Animais , Camundongos , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Nylons/farmacologia , Distrofia Miotônica/genética , Repetições de Trinucleotídeos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , DNA , Imidazóis/farmacologiaRESUMO
Loss or downregulation of major histocompatibility complex class I (MHC-I) contributes to tumor immune evasion. We previously demonstrated that angiopoietin-like protein 2 (ANGPTL2) promotes tumor progression using a Xp11.2 translocation renal cell carcinoma (tRCC) mouse model. However, molecular mechanisms underlying ANGPTL2 tumor-promoting activity in the tRCC model remained unclear. Here, we report that ANGPTL2 deficiency in renal tubular epithelial cells slows tumor progression in the tRCC mouse model and promotes activated CD8+ T-cell infiltration of kidney tissues. We also found that Angptl2-deficient tumor cells show enhanced interferon γ-induced expression of MHC-I and increased susceptibility to CD8+ T-cell-mediated anti-tumor immune responses. Moreover, we provide evidence that the ANGPTL2-α5ß1 integrin pathway accelerates polycomb repressive complex 2-mediated repression of MHC-I expression in tumor cells. These findings suggest that ANGPTL2 signaling in tumor cells contributes to tumor immune evasion and that suppressing that signaling in tumor cells could serve as a potential strategy to facilitate tumor elimination by T-cell-mediated anti-tumor immunity.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Evasão Tumoral/genética , Repressão Epigenética , Antígenos de Histocompatibilidade Classe I/genética , Carcinoma de Células Renais/genética , Modelos Animais de DoençasRESUMO
MicroRNAs (miRNAs) play a crucial role in regulating gene expression. MicroRNA expression levels fluctuate, and point mutations and methylation occur in cancer cells; however, to date, there have been no reports of carcinogenic point mutations in miRNAs. MicroRNA 142 (miR-142) is frequently mutated in patients with follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia (CLL), and acute myeloid leukemia/myelodysplastic syndrome (AML/MDS). To understand the role of miR-142 mutation in blood cancers, the CRISPR-Cas9 system was utilized to successfully generate miR-142-55A>G mutant knock-in (Ki) mice, simulating the most frequent mutation in patients with miR-142 mutated AML/MDS. Bone marrow cells from miR-142 mutant heterozygous Ki mice were transplanted, and we found that the miR-142 mutant/wild-type cells were sufficient for the development of CD8+ T-cell leukemia in mice post-transplantation. RNA-sequencing analysis in hematopoietic stem/progenitor cells and CD8+ T-cells revealed that miR-142-Ki/+ cells had increased expression of the mTORC1 activator, a potential target of wild-type miR-142-3p. Notably, the expression of genes involved in apoptosis, differentiation, and the inhibition of the Akt-mTOR pathway was suppressed in miR-142-55A>G heterozygous cells, indicating that these genes are repressed by the mutant miR-142-3p. Thus, in addition to the loss of function due to the halving of wild-type miR-142-3p alleles, mutated miR-142-3p gained the function to suppress the expression of distinct target genes, sufficient to cause leukemogenesis in mice.
Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Síndromes Mielodisplásicas , Animais , Camundongos , Carcinogênese , Linfócitos T CD8-Positivos/metabolismo , Mutação com Ganho de Função , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Síndromes Mielodisplásicas/genéticaRESUMO
Self-renewal and differentiation are tightly controlled to maintain haematopoietic stem cell (HSC) homeostasis in the adult bone marrow1,2. During fetal development, expansion of HSCs (self-renewal) and production of differentiated haematopoietic cells (differentiation) are both required to sustain the haematopoietic system for body growth3,4. However, it remains unclear how these two seemingly opposing tasks are accomplished within the short embryonic period. Here we used in vivo genetic tracing in mice to analyse the formation of HSCs and progenitors from intra-arterial haematopoietic clusters, which contain HSC precursors and express the transcription factor hepatic leukaemia factor (HLF). Through kinetic study, we observed the simultaneous formation of HSCs and defined progenitors-previously regarded as descendants of HSCs5-from the HLF+ precursor population, followed by prompt formation of the hierarchical haematopoietic population structure in the fetal liver in an HSC-independent manner. The transcription factor EVI1 is heterogeneously expressed within the precursor population, with EVI1hi cells being predominantly localized to intra-embryonic arteries and preferentially giving rise to HSCs. By genetically manipulating EVI1 expression, we were able to alter HSC and progenitor output from precursors in vivo. Using fate tracking, we also demonstrated that fetal HSCs are slowly used to produce short-term HSCs at late gestation. These data suggest that fetal HSCs minimally contribute to the generation of progenitors and functional blood cells before birth. Stem cell-independent pathways during development thus offer a rational strategy for the rapid and simultaneous growth of tissues and stem cell pools.
Assuntos
Linhagem da Célula , Feto , Células-Tronco Hematopoéticas , Fígado , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Medula Óssea , Diferenciação Celular , Autorrenovação Celular , Rastreamento de Células , Feminino , Feto/citologia , Células-Tronco Hematopoéticas/citologia , Fígado/citologia , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Camundongos , Gravidez , Fatores de Transcrição/metabolismoRESUMO
Control of gut microbes is crucial for not only local defense in the intestine but also proper systemic immune responses. Although intestinal epithelial cells (IECs) play important roles in cytokine-mediated control of enterobacteria, the underlying mechanisms are not fully understood. Here we show that deletion of IκBζ in IECs in mice leads to dysbiosis with marked expansion of segmented filamentous bacteria (SFB), thereby enhancing Th17 cell development and exacerbating inflammatory diseases. Mechanistically, the IκBζ deficiency results in decrease in the number of Paneth cells and impairment in expression of IL-17-inducible genes involved in IgA production. The decrease in Paneth cells is caused by aberrant activation of IFN-γ signaling and a failure of IL-17-dependent recovery from IFN-γ-induced damage. Thus, the IL-17R-IκBζ axis in IECs contributes to the maintenance of intestinal homeostasis by serving as a key component in a regulatory loop between the gut microbiota and immune cells.
Assuntos
Disbiose , Interleucina-17 , Células Th17 , Animais , Camundongos , Disbiose/metabolismo , Células Epiteliais , Expressão Gênica , Interleucina-17/genética , Interleucina-17/metabolismo , Mucosa Intestinal , Celulas de Paneth/metabolismoRESUMO
Epithelial protein lost in neoplasm (EPLIN) is an actin-associated cytoskeletal protein that plays an important role in epithelial cell adhesion. EPLIN has two isoforms: EPLINα and EPLINß. In this study, we investigated the role of EPLINß in osteoblasts using EPLINß-deficient (EPLINßGT/GT ) mice. The skeletal phenotype of EPLINßGT/GT mice is indistinguishable from the wildtype (WT), but bone properties and strength were significantly decreased compared with WT littermates. Histomorphological analysis revealed altered organization of bone spicules and osteoblast cell arrangement, and decreased alkaline phosphatase activity in EPLINßGT/GT mouse bones. Transmission electron microscopy revealed wider intercellular spaces between osteoblasts in EPLINßGT/GT mice, suggesting aberrant cell adhesion. In EPLINßGT/GT osteoblasts, α- and ß-catenins and F-actin were observed at the cell membrane, but OB-cadherin was localized at the perinuclear region, indicating that cadherin-catenin complexes were not formed. EPLINß knockdown in MC3T3-e1 osteoblast cells showed similar results as in calvaria cell cultures. Bone formation markers, such as RUNX2, Osterix, ALP, and Col1a1 mRNA were reduced in EPLINß knockdown cells, suggesting an important role for EPLINß in osteoblast formation. In conclusion, we propose that EPLINß is involved in the assembly of cadherin-catenin complexes in osteoblasts and affects bone formation.
RESUMO
Naked mole-rats (NMRs) have a very low spontaneous carcinogenesis rate, which has prompted studies on the responsible mechanisms to provide clues for human cancer prevention. However, it remains unknown whether and how NMR tissues respond to experimental carcinogenesis induction. Here, we show that NMRs exhibit extraordinary resistance against potent chemical carcinogenesis induction through a dampened inflammatory response. Although carcinogenic insults damaged skin cells of both NMRs and mice, NMR skin showed markedly lower immune cell infiltration. NMRs harbour loss-of-function mutations in RIPK3 and MLKL genes, which are essential for necroptosis, a type of necrotic cell death that activates strong inflammation. In mice, disruption of Ripk3 reduced immune cell infiltration and delayed carcinogenesis. Therefore, necroptosis deficiency may serve as a cancer resistance mechanism via attenuating the inflammatory response in NMRs. Our study sheds light on the importance of a dampened inflammatory response as a non-cell-autonomous cancer resistance mechanism in NMRs.
Assuntos
Ratos-Toupeira , Necroptose , Animais , Carcinogênese , Inflamação , Camundongos , PeleRESUMO
We identified a functional SNP in the 3' untranslated region of Pak1 that is responsible for the skin tumor modifier of MSM 1a locus. Candidate SNPs in the 3' untranslated region of Pak1 from resistance strain MSM/Ms were introduced into susceptible strain FVB/N using CRISPR/Cas9. The 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate skin carcinogenesis experiments revealed an SNP (Pak1-3' untranslated region-6C>T: rs31627325) that strongly suppressed skin tumors. Furthermore, MBNL1 bound more strongly to FVB-allele (6C/C) and regulated the transcript length in the 3' untranslated region of Pak1 and tumorigenesis through polyadenylation. Therefore, the alternative polyadenylation of Pak1 is cis-regulated by rs31627325.
Assuntos
Poliadenilação , Neoplasias Cutâneas , Quinases Ativadas por p21 , Regiões 3' não Traduzidas , Animais , Carcinogênese , Camundongos , Camundongos Endogâmicos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol , Quinases Ativadas por p21/genéticaRESUMO
High mobility group AT-hook 2 (Hmga2) is a chromatin modifier protein that plays a critical role in fetal development and leukemia propagation by binding to chromatin and DNA via its AT-hook domains. However, the molecular mechanisms by which Hmga2 activates the expression of target genes to drive the self-renewal of hematopoietic stem cells (HSCs) remain unclear. We generated Rosa26 locus Hmga2 conditional knock-in mice and found that overexpression of Hmga2 promoted self-renewal of normal HSCs, but maintained their fitness in bone marrow, and consequently was not sufficient to initiate malignancy. This result is consistent with previous findings showing that Hmga2 is a proto-oncogene. We also assessed the cellular functions of Hmga2 mutants lacking functional domains and demonstrated that the C-terminus acidic domain of Hmga2 and the domain's linker region were critical for activating genes involved in stem cell signatures, such as the Igf2bp2 gene, to drive proliferation of HSCs. In contrast, overexpression of Hmga1, a member of the Hmga family with a different linker region, did not drive proliferation of HSCs. Our results reveal a critical role for the acidic domain of Hmga2 and the domain's linker region in modulating the transcription and self-renewal functions of HSCs.
Assuntos
Células-Tronco Hematopoéticas , Neoplasias , Animais , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Proteínas de Ligação a RNAAssuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Proteínas de Ligação a DNA/genética , Leucemia Mieloide/patologia , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas/genética , Proteína 1 Parceira de Translocação de RUNX1/fisiologia , Fatores de Transcrição/genética , Fatores Etários , Animais , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Camundongos , Camundongos Knockout , Translocação GenéticaRESUMO
A loss-of-function mutation in the melanocortin 1 receptor gene (MC1R), which switches off the eumelanin production, causes yellowish coat color variants in mammals. In a wild population of sables (Martes zibellina) in Hokkaido, Japan, the mutation responsible for a bright yellow coat color variant was inferred to be a cysteine replacement at codon 35 of the N-terminal extracellular domain of the Mc1r receptor. In the present study, we validated these findings by applying genome editing on Mc1r in mouse strains C3H/HeJ and C57BL/6N, altering the codon for cysteine (Cys33Phe). The resulting single amino acid substitution (Cys33Phe) and unintentionally generated frameshift mutations yielded a color variant exhibiting substantially brighter body color, indicating that the Cys35 replacement produced sufficient MC1R loss of function to confirm that this mutation is responsible for producing the Hokkaido sable yellow color variant. Notably, the yellowish mutant mouse phenotype exhibited brown coloration in subapical hair on the dorsal side in both the C3H/HeJ and C57BL/6N strains, despite the inability of the latter to produce the agouti signaling protein (Asip). This darker hair and body coloration was not apparent in the Hokkaido sable variant, implying the presence of an additional genetic system shaping yellowish hair variability.
Assuntos
Cisteína/genética , Edição de Genes , Cor de Cabelo/genética , Mutação , Fenótipo , Receptor Tipo 1 de Melanocortina/genética , Animais , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Receptor Tipo 1 de Melanocortina/químicaRESUMO
Although advanced lipidomics technology facilitates quantitation of intracellular lipid components, little is known about the regulation of lipid metabolism in cancer cells. Here, we show that disruption of the Gdpd3 gene encoding a lysophospholipase D enzyme significantly decreased self-renewal capacity in murine chronic myelogenous leukaemia (CML) stem cells in vivo. Sophisticated lipidomics analyses revealed that Gdpd3 deficiency reduced levels of certain lysophosphatidic acids (LPAs) and lipid mediators in CML cells. Loss of Gdpd3 also activated AKT/mTORC1 signalling and cell cycle progression while suppressing Foxo3a/ß-catenin interaction within CML stem cell nuclei. Strikingly, CML stem cells carrying a hypomorphic mutation of Lgr4/Gpr48, which encodes a leucine-rich repeat (LRR)-containing G-protein coupled receptor (GPCR) acting downstream of Gdpd3, displayed inadequate disease-initiating capacity in vivo. Our data showing that lysophospholipid metabolism is required for CML stem cell maintenance in vivo establish a new, biologically significant mechanism of cancer recurrence that is independent of oncogene addiction.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O3/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Recidiva Local de Neoplasia/metabolismo , Diester Fosfórico Hidrolases/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , beta Catenina/metabolismoRESUMO
Intestinal nematode infection induces pulmonary eosinophilia via IL-33, although the mechanism of pulmonary IL-33 induction remains unclear. Because nematode migration damages lungs, we speculated that lung-derived damage-associated molecular patterns (DAMPs) possess an IL-33-inducing activity (IL33ia). Indeed, intra-nasal administration of a lung extract induced IL-33 production in lungs. Additionally, lung extracts increased Il33 mRNA expression in primary lung fibroblasts. Proteomic analysis identified retinoblastoma-binding protein 9 (RBBP9) as a major DAMP with IL33ia. RBBP9 was originally discovered as a protein that provides cells with resistance to the growth inhibitory effect of transforming growth factor (TGF)-ß1. Here, we found that stimulation by RBBP9 induced primary fibroblasts to produce prostaglandin E2 (PGE2) that, in turn, induced fibroblasts to produce IL-33. RBBP9-activated fibroblasts expressed mRNAs of cyclooxygenase-2 (COX-2) and PGE2 synthase-1 that convert arachidonic acid to PGE2. Furthermore, they expressed PGE2 receptors E-prostanoid (EP) 2 and EP4. Thus, treatment with a COX-2 inhibitor or EP2 and/or EP4 receptor antagonists inhibited RBBP9-induced IL-33 production. Nematode infection induced pulmonary Il33 mRNA expression, which was inhibited by the COX-2 inhibitor or EP2 and EP4 antagonists, suggesting that nematode infection induced pulmonary Il33 mRNA via PGE2. RBBP9 was expressed constitutively in the lung in the steady state, which did not increase after nematode infection. Finally, we found that Rbbp9-deficient mice had a significantly diminished capacity to increase pulmonary Il33 mRNA expression following nematode infection. Thus, the PGE2-EP2/EP4 pathway activated by RBBP9 released from damaged lungs is important for pulmonary IL-33 production in nematode-infected animals.