Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(1): 132-145, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36250888

RESUMO

Intracellular oncoproteins can be inhibited with targeted therapy, but responses are not durable. Immune therapies can be curative, but most oncogene-driven tumors are unresponsive to these agents. Fragments of intracellular oncoproteins can act as neoantigens presented by the major histocompatibility complex (MHC), but recognizing minimal differences between oncoproteins and their normal counterparts is challenging. We have established a platform technology that exploits hapten-peptide conjugates generated by covalent inhibitors to create distinct neoantigens that selectively mark cancer cells. Using the FDA-approved covalent inhibitors sotorasib and osimertinib, we developed "HapImmune" antibodies that bind to drug-peptide conjugate/MHC complexes but not to the free drugs. A HapImmune-based bispecific T-cell engager selectively and potently kills sotorasib-resistant lung cancer cells upon sotorasib treatment. Notably, it is effective against KRASG12C-mutant cells with different HLA supertypes, HLA-A*02 and A*03/11, suggesting loosening of MHC restriction. Our strategy creates targetable neoantigens by design, unifying targeted and immune therapies. SIGNIFICANCE: Targeted therapies against oncoproteins often have dramatic initial efficacy but lack durability. Immunotherapies can be curative, yet most tumors fail to respond. We developed a generalizable technology platform that exploits hapten-peptides generated by covalent inhibitors as neoantigens presented on MHC to enable engineered antibodies to selectively kill drug-resistant cancer cells. See related commentary by Cox et al., p. 19. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Neoplasias Pulmonares , Complexo Principal de Histocompatibilidade , Humanos , Neoplasias Pulmonares/patologia , Antígenos de Histocompatibilidade Classe I , Antígenos de Neoplasias , Peptídeos/farmacologia , Antígenos de Histocompatibilidade , Haptenos
2.
Cell Stem Cell ; 1(1): 101-112, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-18371339

RESUMO

Hematopoietic stem cells (HSCs) are maintained in an undifferentiated quiescent state within a bone marrow niche. Here we show that Foxo3a, a forkhead transcription factor that acts downstream of the PTEN/PI3K/Akt pathway, is critical for HSC self-renewal. We generated gene-targeted Foxo3a(-/-) mice and showed that, although the proliferation and differentiation of Foxo3a(-/-) hematopoietic progenitors were normal, the number of colony-forming cells present in long-term cocultures of Foxo3a(-/-) bone marrow cells and stromal cells was reduced. The ability of Foxo3a(-/-) HSCs to support long-term reconstitution of hematopoiesis in a competitive transplantation assay was also impaired. Foxo3a(-/-) HSCs also showed increased phosphorylation of p38MAPK, an elevation of ROS, defective maintenance of quiescence, and heightened sensitivity to cell-cycle-specific myelotoxic injury. Finally, HSC frequencies were significantly decreased in aged Foxo3a(-/-) mice compared to the littermate controls. Our results demonstrate that Foxo3a plays a pivotal role in maintaining the HSC pool.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Ativação Enzimática , Citometria de Fluxo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA