Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1044944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570932

RESUMO

Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid, which arises from redox-sensitive methionine metabolism. In plants, Hcy synthesis involves both cystathionine ß-lyase and S-adenosylhomocysteine hydrolase activities. Thus, Hcy itself is crucial for de novo methionine synthesis and S-adenosylmethionine recycling, influencing the formation of ethylene, polyamines, and nicotianamine. Research on mammalian cells has shown biotoxicity of this amino acid, as Hcy accumulation triggers oxidative stress and the associated lipid peroxidation process. In addition, the presence of highly reactive groups induces Hcy and Hcy derivatives to modify proteins by changing their structure and function. Currently, Hcy is recognized as a critical, independent hallmark of many degenerative metabolic diseases. Research results indicate that an enhanced Hcy level is also toxic to yeast and bacteria cells. In contrast, in the case of plants the metabolic status of Hcy remains poorly examined and understood. However, the presence of the toxic Hcy metabolites and Hcy over-accumulation during the development of an infectious disease seem to suggest harmful effects of this amino acid also in plant cells. The review highlights potential implications of Hcy metabolism in plant physiological disorders caused by environmental stresses. Moreover, recent research advances emphasize that recognizing the Hcy mode of action in various plant systems facilitates verification of the potential status of Hcy metabolites as bioindicators of metabolism disorders and thus may constitute an element of broadly understood biomonitoring.

2.
Int J Biol Macromol ; 221: 585-603, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36075308

RESUMO

We explored the polyamine (PA) metabolic pathway genes in barley (Hv) to understand plant development and stress adaptation in Gramineae crops with emphasis on leaf senescence. Bioinformatics and functional genomics tools were utilized for genome-wide identification, comprehensive gene features, evolution, development and stress effects on the expression of the polyamine metabolic pathway gene families (PMGs). Three S-adenosylmethionine decarboxylases (HvSAMDCs), two ornithine decarboxylases (HvODCs), one arginine decarboxylase (HvADC), one spermidine synthase (HvSPDS), two spermine synthases (HvSPMSs), five copper amine oxidases (HvCuAOs) and seven polyamine oxidases (HvPAOs) members of PMGs were identified and characterized in barley. All the HvPMG genes were found to be distributed on all chromosomes of barley. The phylogenetic and comparative assessment revealed that PA metabolic pathway is highly conserved in plants and the prediction of nine H. vulgare miRNAs (hvu-miR) target sites, 18 protein-protein interactions and 961 putative CREs in the promoter region were discerned. Gene expression of HvSAMDC3, HvCuAO7, HvPAO4 and HvSPMS1 was apparent at every developmental stage. SPDS/SPMS gene family was found to be the most responsive to induced leaf senescence. This study provides a reference for the functional investigation of the molecular mechanism(s) that regulate polyamine metabolism in plants as a tool for future breeding decision management systems.


Assuntos
Carboxiliases , Hordeum , Hordeum/genética , Hordeum/metabolismo , Filogenia , Melhoramento Vegetal , Poliaminas/metabolismo , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Adenosilmetionina Descarboxilase/farmacologia , Carboxiliases/genética , Carboxiliases/metabolismo , Plantas , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 21(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171629

RESUMO

Heavy metal pollution causes many soils to become a toxic environment not only for plants, but also microorganisms; however, little is known how heavy metal contaminated environment affects metabolism of phytopathogens and their capability of infecting host plants. In this study the oomycete Phytophthora infestans (Mont.) de Bary, the most harmful pathogen of potato, growing under moderate cadmium stress (Cd, 5 mg/L) showed nitro-oxidative imbalance associated with an enhanced antioxidant response. Cadmium notably elevated the level of nitric oxide, superoxide and peroxynitrite that stimulated nitrative modifications within the RNA and DNA pools in the phytopathogen structures. In contrast, the protein pool undergoing nitration was diminished confirming that protein tyrosine nitration is a flexible element of the oomycete adaptive strategy to heavy metal stress. Finally, to verify whether Cd is able to modify P. infestans pathogenicity, a disease index and molecular assessment of disease progress were analysed indicating that Cd stress enhanced aggressiveness of vr P. infestans towards various potato cultivars. Taken together, Cd not only affected hyphal growth rate and caused biochemical changes in P. infestans structures, but accelerated the pathogenicity as well. The nitro-oxidative homeostasis imbalance underlies the phytopathogen adaptive strategy and survival in the heavy metal contaminated environment.


Assuntos
Cádmio/toxicidade , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/metabolismo , Antioxidantes/metabolismo , Homeostase/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Phytophthora infestans/patogenicidade , Doenças das Plantas/etiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/toxicidade , Solanum tuberosum/microbiologia , Estresse Fisiológico , Virulência/efeitos dos fármacos
4.
BMC Plant Biol ; 19(1): 421, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31610789

RESUMO

BACKGROUND: Precise regulation of gene expression is indispensable for the proper functioning of organisms in both optimal and challenging conditions. The most commonly known regulative mechanisms include the modulation of transcription, translation and adjustment of the transcript, and protein half-life. New players have recently emerged in the arena of gene expression regulators - chemical modifications of mRNAs. MAIN TEXT: The latest studies show that modified ribonucleotides affect transcript splicing, localization, secondary structures, interaction with other molecules and translation efficiency. Thus far, attention has been focused mostly on the most widespread mRNA modification - adenosine methylation at the N6 position (m6A). However, initial reports on the formation and possible functions of other modified ribonucleotides, such as cytosine methylated at the 5' position (m5C), 8-hydroxyguanosine (8-OHG) and 8-nitroguanosine (8-NO2G), have started to appear in the literature. Additionally, some reports indicate that pseudouridine (Ψ) is present in mRNAs and might perform important regulatory functions in eukaryotic cells. The present review summarizes current knowledge regarding the above-mentioned modified ribonucleotides (m6A, m5C, 8-OHG, 8-NO2G) in transcripts across various plant species, including Arabidopsis, rice, sunflower, wheat, soybean and potato. CONCLUSIONS: Chemical modifications of ribonucleotides affect mRNA stability and translation efficiency. They thus constitute a newly discovered layer of gene expression regulation and have a profound effect on the development and functioning of various organisms, including plants.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Fenômenos Fisiológicos Vegetais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Front Plant Sci ; 10: 859, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354753

RESUMO

Polyamines (PAs) are low molecular weight organic cations comprising biogenic amines that play multiple roles in plant growth and senescence. PA metabolism was found to play a central role in metabolic and genetic reprogramming during dark-induced barley leaf senescence (DILS). Robust PA catabolism can impact the rate of senescence progression in plants. We opine that deciphering senescence-dependent polyamine-mediated multidirectional metabolic crosstalks is important to understand regulation and involvement of PAs in plant death and re-mobilization of nutrients during senescence. This will involve optimizing the use of PA biosynthesis inhibitors, robust transgenic approaches to modulate PA biosynthetic and catabolic genes, and developing novel germplasm enriched in pro- and anti-senescence traits to ensure sustained crop productivity. PA-mediated delay of senescence can extend the photosynthesis capacity, thereby increasing grain starch content in malting grains such as barley. On the other hand, accelerating the onset of senescence can lead to increases in mineral and nitrogen content in grains for animal feed. Unraveling the "polyamine metabolic switch" and delineating the roles of PAs in senescence should further our knowledge about autophagy mechanisms involved in plant senescence as well as mammalian systems. It is noteworthy that inhibitors of PA biosynthesis block cell viability in animal model systems (cell tumor lines) to control some cancers, in this instance, proliferative cancer cells were led toward cell death. Likewise, PA conjugates work as signal carriers for slow release of regulatory molecule nitric oxide in the targeted cells. Taken together, these and other outcomes provide examples for developing novel therapeutics for human health wellness as well as developing plant resistance/tolerance to stress stimuli.

6.
Front Plant Sci ; 5: 245, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24917871

RESUMO

Cadmium (Cd) is non-essential heavy metal, which in excess, exhibits deleterious effects to the most of the organisms. Mobilization of defense mechanisms against this toxic agent requires rapid activation of signaling pathways. The article presents recent advances in the research concerning cadmium signal transduction in plants. New insights into the involvement of reactive oxygen species (ROS), nitric oxide (NO), plant growth regulators, and Cd-induced protein modifications are reviewed. Moreover, the role of recently recognized Cd-associated signal elements, including micro RNAs and several cis- and trans-acting elements is discussed.

7.
Planta ; 239(3): 679-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24346311

RESUMO

The phenomenon of cross-resistance allows plants to acquire resistance to a broad range of stresses after previous exposure to one specific factor. Although this stress-response relationship has been known for decades, the sequence of events that underpin cross-resistance remains unknown. Our experiments revealed that susceptible potato (Solanum tuberosum L. cv. Bintje) undergoing aluminum (Al) stress at the root level showed enhanced defense responses correlated with reduced disease symptoms after leaf inoculation with Phytophthora infestans. The protection capacity of Al to subsequent stress was associated with the local accumulation of H2O2 in roots and systemic activation of salicylic acid (SA) and nitric oxide (NO) dependent pathways. The most crucial Al-mediated changes involved coding of NO message in an enhanced S-nitrosothiol formation in leaves tuned with an abundant SNOs accumulation in the main vein of leaves. Al-induced distal NO generation was correlated with the overexpression of PR-2 and PR-3 at both mRNA and protein activity levels. In turn, after contact with a pathogen we observed early up-regulation of SA-mediated defense genes, e.g. PR1, PR-2, PR-3 and PAL, and subsequent disease limitation. Taken together Al exposure induced distal changes in the biochemical stress imprint, facilitating more effective responses to a subsequent pathogen attack.


Assuntos
Alumínio/farmacologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Phytophthora infestans/imunologia , Solanum tuberosum/efeitos dos fármacos , Biomarcadores/metabolismo , Peróxido de Hidrogênio , Óxido Nítrico/metabolismo , Ácido Salicílico , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo
8.
Plant Physiol Biochem ; 63: 177-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23266362

RESUMO

Homocysteine (Hcy) is a naturally occurring intermediate metabolite formed during methionine metabolism. It has been well documented that its excess can be extremely toxic to mammalian, yeast and bacterial cells. In spite of the metabolic value of Hcy known for decades, the role of this amino acid in the plant response to stress has not been recognized yet. In the presented study, using potato plant (Solanum tuberosum L.) and Phytophthora infestans as a model system, the presence and tissue localization of Hcy in leaves was examined by an immunohistochemical method. The over-production of Hcy was more evidenced in the susceptible than in the resistant genotype of potato starting from 48 hpi. Furthermore, the elevated level of Hcy was correlated in time with the up-regulation of genes engaged in its biosynthesis, e.g. cystathionine ß-lyase and S-adenosyl-l-homocysteine hydrolase. The pharmacological approach with exogenous Hcy resulted in significant rise in lipid peroxidation and more potent late blight disease development in leaves of susceptible potato as well. Finally, it has been found that key defense enzymes, i.e. phenylalanine ammonia lyase and ß-1,3-glucanase were up-regulated early in the resistant potato genotype, starting from 1st hpi. In turn, in the susceptible potato the time-lag in expression of these enzymes tuned with excess production of Hcy might facilitate leaf tissue colonization by pathogen. Based on obtained results it should be stated that Hcy over-accumulation is engaged in pathophysiological mechanism leading to the abolishment of the resistance and might be an informative disease hallmark both in plant and in animal system.


Assuntos
Homocisteína/metabolismo , Folhas de Planta/metabolismo , Solanum tuberosum/metabolismo , Imuno-Histoquímica , Liases/metabolismo , Proteínas de Vegetais Comestíveis/metabolismo
9.
Plant Physiol Biochem ; 58: 124-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22819859

RESUMO

The sequence of events leading to the programmed cell death (PCD) induced by heavy metals in plants is still the object of extensive investigation. In this study we showed that roots of 3-day old yellow lupine (Lupinus luteus L.) seedlings exposed to cadmium (Cd, 89µM CdCl(2)) resulted in PCD starting from 24h of stress duration, which was evidenced by TUNEL-positive reaction. Cd-induced PCD was preceded by a relatively early burst of nitric oxide (NO) localized mainly in the root tips. Above changes were accompanied by the NADPH-oxidase-dependent superoxide anion (O(2)(·-)) production. However, the concomitant high level of both NO and O(2)(·-) at the 24th h of Cd exposure did not provoke an enhanced peroxynitrite formation. The treatment with the NADPH-oxidase inhibitor and NO-scavenger significantly reduced O(2)(·-) and NO production, respectively, as well as diminished the pool of cells undergoing PCD. The obtained data indicate that boosted NO and O(2)(·-) production is required for Cd-induced PCD in lupine roots. Moreover, we found that in roots of 14-day old lupine plants the NO-dependent Cd-induced PCD was correlated with the enhanced level of the post-stress signals in leaves, including distal NO cross-talk with hydrogen peroxide.


Assuntos
Adaptação Fisiológica , Apoptose/efeitos dos fármacos , Cádmio/farmacologia , Lupinus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Raízes de Plantas/efeitos dos fármacos , Estresse Fisiológico , Marcação In Situ das Extremidades Cortadas , Lupinus/citologia , Lupinus/fisiologia , Metais Pesados/farmacologia , NADPH Oxidases/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/fisiologia , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/fisiologia , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo
10.
Plant Sci ; 181(5): 612-20, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21893258

RESUMO

During the last decade it has been found that cadmium (Cd), one of the most toxic elements occurring in polluted environments, interferes with nitric oxide (NO), a multifunctional signaling molecule in living organisms. The formation of NO has been demonstrated in vivo in various plant tissues exposed to Cd stress, but unfortunately, the time and intensity of NO generation, relatively frequently shows conflicting data. What is more, there is still limited information regarding the functional role of endogenously produced NO in plants challenged with heavy metals. The first pharmacological approaches revealed that exogenously applied NO can alleviate cadmium toxicity in plants, promoting the direct scavenging of reactive oxygen species (ROS) or activating antioxidant enzymes. However, recent reports have indicated that NO even contributes to Cd toxicity by promoting Cd uptake and participates in metal-induced reduction of root growth. In view of this heterogeneous knowledge, much more puzzling if we consider results first obtained using exogenous NO sources, this review is focused mainly on the implication of endogenous NO in plant response to Cd exposure. Furthermore, a basic draft for NO mode of action during cadmium stress is proposed.


Assuntos
Cádmio/farmacologia , Poluentes Ambientais/farmacologia , Óxido Nítrico/fisiologia , Plantas/metabolismo , Estresse Fisiológico , Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Transdução de Sinais
11.
Acta Biochim Pol ; 58(2): 211-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21503278

RESUMO

Species-specific changes in expression of phenylalanine ammonia-lyase (PAL) and lignin content were detected in roots of soybean (Glycine max L.) and lupine (Lupinus luteus L.) seedlings treated with different concentrations of cadmium (Cd(2+), 0-25 mg/l) or lead (Pb(2+), 0-350 mg/l). The stimulatory effect of both metals was observed in mRNA coding for PAL in soybean. In the case of lupine, changes of PAL mRNA level were dependent on the metal used: Cd(2+) caused a decrease, whereas Pb(2+) an increase of PAL transcript level. The activity of PAL was enhanced in both plant species at higher metal concentrations (15-25 mg/l of Cd(2+) or 150-350 mg/l of Pb(2+)); however it was not directly correlated with PAL mRNA. This suggests a transcriptional and posttranscriptional control of PAL expression under heavy metals stress. In soybean, Cd(2+) or Pb(2+) treatment increased lignin content, while in lupine the effect was opposite. The decreased lignin accumulation in lupine roots in response to heavy metals, despite an increased PAL activity, suggests that the activated phenylpropanoid pathway was involved in the synthesis of secondary metabolites other than lignin.


Assuntos
Cádmio/farmacologia , Glycine max/enzimologia , Chumbo/farmacologia , Lignina/metabolismo , Lupinus/enzimologia , Redes e Vias Metabólicas/efeitos dos fármacos , Fenilalanina Amônia-Liase/genética , Proteínas de Plantas/genética , Plântula/enzimologia , Ensaios Enzimáticos , Regulação da Expressão Gênica de Plantas , Lupinus/efeitos dos fármacos , Lupinus/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Glycine max/efeitos dos fármacos , Glycine max/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA