Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Med Oncol ; 41(6): 140, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713310

RESUMO

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Assuntos
Neoplasias Encefálicas , Canabidiol , Glioblastoma , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Canabidiol/farmacologia , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Grânulos de Estresse/metabolismo , Grânulos de Estresse/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/metabolismo
2.
Methods Cell Biol ; 184: 105-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555151

RESUMO

Myeloid-derived suppressor cells (MDSCs) are an integral part of the tumor microenvironment (TME). MDSC's involvement in the TME starts as soon as the primary tumor starts to get its blood supply causing an immunosuppressive environment and tumor cell invasion, and then at the formation of premetastatic niche through full-blown metastasis in distal organs. All of these functions don't require physical interaction of MDSC as some of the MDSC's functions can be replicated by secreted exosomes (MDSC-derived exosomes), which can alter the microenvironment through cellular interaction by fusion with the plasma membrane and subsequent release of their cargo, consisting of proteins, soluble factors, lipids, DNAs, microRNAs (miRNAs), and RNAs. In this method paper, we explained how to isolate MDSC exosomes and how to use the exosome to observe immunosuppressive function. We also discussed how to measure the number of exosomes by nanoparticle tracking analysis. Additionally, we outlined how to measure the protein of exosomes as well as the types of protein by Bradford assay and membrane cytokine array respectively. We also provided instructions on how to utilize MDSC-derived exosomes to get knowledge about in vitro immune cell migration, scratch assay with the tumor cells, and in vivo effect of MDSC exosome along with T cell function and proliferation.


Assuntos
Exossomos , MicroRNAs , Células Supressoras Mieloides , Células Supressoras Mieloides/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Linfócitos T , Microambiente Tumoral
3.
Transl Stroke Res ; 15(2): 446-461, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-36689081

RESUMO

Vascular cognitive impairment and dementia (VCID) are a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is valid for VCID. Previously, we have reported that remote ischemic postconditioning (RIPostC) during chronic cerebral hypoperfusion (CCH) induced by BCAS increases cerebral blood flow (CBF), improves cognitive function, and reduces white matter damage. We hypothesized that physical exercise (EXR) would augment CBF during CCH and prevent cognitive impairment in the BCAS model. BCAS was performed in C57/B6 mice of both sexes to establish CCH. One week after the BCAS surgery, mice were randomized to treadmill exercise once daily or no EXR for four weeks. CBF was monitored with an LSCI pre-, post, and 4 weeks post-BCAS. Cognitive testing was performed for post-BCAS after exercise training, and brain tissue was harvested for histopathology and biochemical test. BCAS led to chronic hypoperfusion resulting in impaired cognitive function and other functional outcomes. Histological examination revealed that BCAS caused changes in neuronal morphology and cell death in the cortex and hippocampus. Immunoblotting showed that BCAS was associated with a significant downregulate of AMPK and pAMPK and NOS3 and pNOS3. BCAS also decreased red blood cell (RBC) deformability. EXR therapy increased and sustained improved CBF and cognitive function, muscular strength, reduced cell death, and loss of white matter. EXR is effective in the BCAS model, improving CBF and cognitive function, reducing white matter damage, improving RBC deformability, and increasing RBC NOS3 and AMPK. The mechanisms by which EXR improves CBF and attenuates tissue damage need further investigation.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Demência Vascular , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/complicações , Demência Vascular/etiologia , Demência Vascular/terapia , Demência Vascular/patologia , Modelos Animais de Doenças
4.
Cannabis Cannabinoid Res ; 8(5): 824-834, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-34918964

RESUMO

Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.


Assuntos
Neoplasias Encefálicas , Canabidiol , Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Microambiente Tumoral , Ecossistema , Imunidade Inata , Linhagem Celular Tumoral , Linfócitos/metabolismo , Linfócitos/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
5.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139652

RESUMO

The current standard-of-care treatment for glioblastoma includes DNA damaging agents, γ-irradiation (IR) and temozolomide (TMZ). These treatments fail frequently and there is limited alternative strategy. Therefore, identifying a new therapeutic target is urgently needed to develop a strategy that improves the efficacy of the existing treatments. Here, we report that tumor samples from GBM patients express a high level of SAMHD1, emphasizing SAMHD1's importance. The depletion of SAMHD1 using virus-like particles containing Vpx, VLP(+Vpx), sensitized two independent GBM cell lines (LN-229 and U-87) to veliparib, a well-established PARP inhibitor, and slowed cell growth in a dose-dependent manner. In the mouse GBM xenograft model, Vpx-mediated SAMHD1 depletion reduced tumor growth and SAMHD1 knockout (KO) improved survival. In combination with IR or TMZ, SAMHD1 KO and exposure to 50% growth inhibitory dose (gID50) of VLP(+Vpx) displayed a synergistic effect, resulting in impaired HR, and improved LN-229 cells' sensitivity to TMZ and IR. In conclusion, our finding demonstrates that SAMHD1 promotes GBM resistance to treatment, and it is a plausible therapeutic target to improve the efficacy of TMZ and IR in GBM. Furthermore, we show that Vpx could be a potential therapeutic tool that can be utilized to deplete SAMHD1 in GBM.

6.
Immunol Rev ; 312(1): 76-102, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35808839

RESUMO

Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Neoplasias , Comunicação Celular , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/metabolismo , Microambiente Tumoral
7.
Exp Biol Med (Maywood) ; 247(16): 1433-1446, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35666093

RESUMO

Microglia, the tissue-resident macrophage of the central nervous system (CNS), play a paramount role in brain health and disease status. Here, we describe a novel method for enriching and isolating primary microglia from mouse brain tissue. This isolation method yields a high number of cells from either young or adult mice, and importantly, maintains the health and function of the cells for subsequent cell culture. We also describe flow cytometry methods using novel cell surface markers, including CX3CR1 and Siglec-H, to specifically label microglia while avoiding other bone marrow and/or non-CNS derived macrophages and monocytes, which has been historically difficult to achieve. As microglia are crucial in multiple aspects of biology, such as in normal brain development/function, immune response, neurodegeneration, and cancer, this isolation technique could greatly benefit a wide range of studies in human CNS biology, health, and disease mechanisms. Being able to isolate a largely pure population of microglia could also allow for a more comprehensive understanding of their functional dynamics and role in disease mechanisms, advancement of potential biomarkers, and development of novel therapeutic targets to improve prognosis and quality of life in multiple diseases.


Assuntos
Microglia , Qualidade de Vida , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
8.
Stroke ; 53(5): 1802-1812, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35354299

RESUMO

Cerebral ischemia and reperfusion initiate cellular events in brain that lead to neurological disability. Investigating these cellular events provides ample targets for developing new treatments. Despite considerable work, no such therapy has translated into successful stroke treatment. Among other issues-such as incomplete mechanistic knowledge and faulty clinical trial design-a key contributor to prior translational failures may be insufficient scientific rigor during preclinical assessment: nonblinded outcome assessment; missing randomization; inappropriate sample sizes; and preclinical assessments in young male animals that ignore relevant biological variables, such as age, sex, and relevant comorbid diseases. Promising results are rarely replicated in multiple laboratories. We sought to address some of these issues with rigorous assessment of candidate treatments across 6 independent research laboratories. The Stroke Preclinical Assessment Network (SPAN) implements state-of-the-art experimental design to test the hypothesis that rigorous preclinical assessment can successfully reduce or eliminate common sources of bias in choosing treatments for evaluation in clinical studies. SPAN is a randomized, placebo-controlled, blinded, multilaboratory trial using a multi-arm multi-stage protocol to select one or more putative stroke treatments with an implied high likelihood of success in human clinical stroke trials. The first stage of SPAN implemented procedural standardization and experimental rigor. All participating research laboratories performed middle cerebral artery occlusion surgery adhering to a common protocol and rapidly enrolled 913 mice in the first of 4 planned stages with excellent protocol adherence, remarkable data completion and low rates of subject loss. SPAN stage 1 successfully implemented treatment masking, randomization, prerandomization inclusion/exclusion criteria, and blinded assessment to exclude bias. Our data suggest that a large, multilaboratory, preclinical assessment effort to reduce known sources of bias is feasible and practical. Subsequent SPAN stages will evaluate candidate treatments for potential success in future stroke clinical trials using aged animals and animals with comorbid conditions.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Idoso , Animais , Encéfalo , Isquemia Encefálica/terapia , Estudos de Viabilidade , Humanos , Infarto da Artéria Cerebral Média/terapia , Masculino , Camundongos , Acidente Vascular Cerebral/terapia
9.
J Biomed Nanotechnol ; 17(6): 1170-1183, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34167630

RESUMO

Exosomes, a component of extracellular vesicles, are shown to carry important small RNAs, mRNAs, protein, and bioactive lipid from parent cells and are found in most biological fluids. Investigators have demonstrated the importance of mesenchymal stem cells derived exosomes in repairing stroke lesions. However, exosomes from endothelial progenitor cells have not been tested in any stroke model, nor has there been an evaluation of whether these exosomes target/home to areas of pathology. Targeted delivery of intravenous administered exosomes has been a great challenge, and a targeted delivery system is lacking to deliver naïve (unmodified) exosomes from endothelial progenitor cells to the site of interest. Pulsed focused ultrasound is being used for therapeutic and experimental purposes. There has not been any report showing the use of low-intensity pulsed focused ultrasound to deliver exosomes to the site of interest in stroke models. In this proof of principle study, we have shown different parameters of pulsed focused ultrasound to deliver exosomes in the intact and stroke brain with or without intravenous administration of nanobubbles. The study results showed that administration of nanobubbles is detrimental to the brain structures (micro bleeding and white matter destruction) at peak negative pressure of >0.25 megapascal, despite enhanced delivery of intravenous administered exosomes. However, without nanobubbles, pulsed focused ultrasound enhances the delivery of exosomes in the stroke area without altering the brain structures.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Encéfalo/diagnóstico por imagem , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Ondas Ultrassônicas
10.
Oncol Rep ; 45(3): 1171-1181, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33469683

RESUMO

Myeloid­derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME). Along with the role of MDSC immunosuppression and antitumor immunity, MDSCs facilitate tumor growth, differentiation, and metastasis in several ways that are yet to be explored. Like any other cell type, MDSCs also release a tremendous number of exosomes, or nanovesicles of endosomal origin, that participate in intercellular communications by dispatching biological macromolecules. There have been no investigational studies conducted to characterize the role of MDSC­derived exosomes (MDSC exo) in modulating the TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant level of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed a higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper­activating or exhausting CD8 T­cells and induce reactive oxygen species production that elicits activation­induced cell death. We confirmed the depletion of CD8 T­cells in vivo by treating mice with MDSC exo. We also observed a reduction in pro­inflammatory M1­macrophages in the spleen of those animals. Our results indicate that the immunosuppressive and tumor­promoting functions of MDSCs are also implemented by MDSC­derived exosomes which would open up a new avenue of MDSC research and MDSC­targeted therapy.


Assuntos
Exossomos/metabolismo , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Humanos , Macrófagos/imunologia , Camundongos , Células Supressoras Mieloides/metabolismo , Neoplasias/patologia , Cultura Primária de Células
11.
Sci Rep ; 10(1): 20233, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214598

RESUMO

Post-stroke cognitive impairment (PSCI) is a major source of disability, affecting up to two thirds of stroke survivors with no available therapeutic options. The condition remains understudied in preclinical models due to its delayed presentation. Although hypertension is a leading risk factor for dementia, how ischemic stroke contributes to this neurodegenerative condition is unknown. In this study, we used a model of hypertension to study the development of PSCI and its mechanisms. Spontaneously hypertensive rats (SHR) were compared to normotensive rats and were subjected to 1-h middle cerebral artery occlusion or sham surgery. Novel object recognition, passive avoidance test and Morris water maze were used to assess cognition. In addition, brain magnetic resonance images were obtained 12-weeks post-stroke and tissue was collected for immunohistochemistry and protein quantification. Stroked animals developed impairment in long-term memory at 4-weeks post-stroke despite recovery from motor deficits, with hypertensive animals showing some symptoms of anhedonia. Stroked SHRs displayed grey matter atrophy and had a two-fold increase in apoptosis in the ischemic borderzone and increased markers of inflammatory cell death and DNA damage at 12 weeks post-stroke. This indicates that preexisting hypertension exacerbates the development of secondary neurodegeneration after stroke beyond its acute effects on neurovascular injury.


Assuntos
Disfunção Cognitiva/psicologia , Substância Cinzenta/patologia , Hipertensão/complicações , Acidente Vascular Cerebral/psicologia , Animais , Atrofia , Morte Celular , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Comorbidade , Modelos Animais de Doenças , Hipertensão/patologia , Imageamento por Ressonância Magnética , Masculino , Memória de Longo Prazo , Teste do Labirinto Aquático de Morris , Ratos , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia
12.
Nov Approaches Cancer Study ; 4(5): 398-401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32924014

RESUMO

Angiogenesis is a hallmark of glioblastoma (GBM) and remains an important therapeutic target in its treatment, especially for recurrent GBM. GBMs are characterized by the release of vascular endothelial growth factor (VEGF), an important regulator and promoter of angiogenesis. Therefore, antiangiogenic therapies (AATs) targeting VEGF or VEGF receptors (VEGFRs) were designed and thought to be an effective tool for controlling the growth of GBM. However, recent results of different clinical trials using humanized monoclonal antibodies against VEGF (bevacizumab), as well as tyrosine kinase inhibitors (TKIs) that target different VEGFRs alone or in combination with other therapeutic agents demonstrated mixed results, with the majority of reports indicating that GBM developed resistance against antiangiogenic treatments.

13.
Adv Ther (Weinh) ; 3(7)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32656313

RESUMO

Given their protumorigenic function and prevalence in most malignant tumors with lower survival; early detection, and intervention of CD206-positive M2 macrophages may boost the clinical outcome. To determine in vivo distribution of M2 macrophages, 111In-oxine-based radiolabeling of the targeted exosomes is adopted. When these radiolabeled targeted exosomes are injected into breast tumor-bearing mice, exosomes accumulate at the periphery of the primary tumor, metastatic foci in the lungs, spleen, and liver. Ex vivo quantification of radioactivity also shows similar distribution. Injecting DiI dye-labeled exosomes into the same mice shows adherence of exosomes to the CD206-positive M2 macrophages on ex vivo fluorescent microscopy imaging. In addition, these engineered exosomes are utilized to carry the Fc portion of lgG2b with the intention of augmenting antibody-dependent cell-mediated cytotoxicity. It is demonstrated that M2 macrophage targeting therapeutic exosomes deplete M2 macrophages both in vitro and in vivo, and reduce tumor burden, increasing survival in a metastatic breast cancer model.

14.
Cancer Lett ; 476: 57-66, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32061755

RESUMO

Targeting early lesion in breast cancer is more therapeutically effective. We have previously identified an oncoprotein GT198 (PSMC3IP) in human breast cancer. Here we investigated GT198 in MMTV-PyMT mouse mammary gland tumors and found that GT198 is a shared early lesion in both species. Similar to human breast cancer even before a tumor appears, cytoplasmic GT198 is overexpressed in mouse tumor stroma including pericyte stem cells, descendent adipocytes, fibroblasts, and myoepithelial cells. Using recombinant GT198 protein as an antigen, we vaccinated MMTV-PyMT mice and found that the GT198 vaccine delayed mouse tumor growth and reduced lung metastasis. The antitumor effects were linearly correlated with vaccinated mouse serum titers of GT198 antibody, which recognized cell surface GT198 protein on viable tumor cells confirmed by FACS. Furthermore, GT198+ tumor cells isolated from MMTV-PyMT tumor induced faster tumor growths than GT198- cells when re-implanted into normal FVB/N mice. Together, this first study of GT198 vaccine in mouse showed its effectiveness in antitumor and anti-metastasis. The finding supports GT198 as a potential target in human immunotherapy since GT198 defect is shared in both human and mouse.


Assuntos
Antígenos Transformantes de Poliomavirus/genética , Vacinas Anticâncer/administração & dosagem , Neoplasias Pulmonares/prevenção & controle , Neoplasias Mamárias Experimentais/prevenção & controle , Proteínas Nucleares/imunologia , Transativadores/imunologia , Vacinação/métodos , Animais , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos , Proteínas Nucleares/antagonistas & inibidores , Transativadores/antagonistas & inibidores
15.
Nat Commun ; 11(1): 515, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980601

RESUMO

CD73, an ecto-5'-nucleotidase (NT5E), serves as an immune checkpoint by generating adenosine (ADO), which suppresses immune activation through the A2A receptor. Elevated CD73 levels in tumor tissues correlate with poor clinical outcomes. However, the crucial source of CD73 activity within the tumor microenvironment remains unspecified. Here, we demonstrate that cancer-associated fibroblasts (CAFs) constitute the prominent CD73hi population in human colorectal cancers (CRCs) and two CD73- murine tumor models, including a modified CRC. Clinically, high CAF abundancy in CRC tissues correlates strongly with elevated CD73 activity and poor prognosis. Mechanistically, CAF-CD73 expression is enhanced via an ADO-A2B receptor-mediated feedforward circuit triggered by tumor cell death, which enforces the CD73-checkpoint. Simultaneous inhibition of A2A and A2B pathways with CD73-neutralization synergistically enhances antitumor immunity in CAF-rich tumors. Therefore, the strategic and effective targeting of both the A2B-mediated ADO-CAF-CD73 feedforward circuit and A2A-mediated immune suppression is crucial for improving therapeutic outcomes.


Assuntos
5'-Nucleotidase/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Receptor A2B de Adenosina/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Progressão da Doença , Sinergismo Farmacológico , Células-Tronco Hematopoéticas/metabolismo , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Testes de Neutralização , Transcriptoma/genética , Resultado do Tratamento , Microambiente Tumoral , Regulação para Cima
16.
Nanomedicine ; 21: 102072, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376572

RESUMO

Exosomes are critical mediators of intercellular crosstalk and are regulator of the cellular/tumor microenvironment. Exosomes have great prospects for clinical application as a theranostic and prognostic probe. Nevertheless, the advancement of exosomes research has been thwarted by our limited knowledge of the most efficient isolation method and their in vivo trafficking. Here we have shown that a combination of two size-based methods using a 0.20 µm syringe filter and 100 k centrifuge membrane filter followed by ultracentrifugation yields a greater number of uniform exosomes. We also demonstrated the visual representation and quantification of the differential in vivo distribution of radioisotope 131I-labeled exosomes from diverse cellular origins, e.g., tumor cells with or without treatments, myeloid-derived suppressor cells and endothelial progenitor cells. We also determined that the distribution was dependent on the exosomal protein/cytokine contents. The applied in vivo imaging modalities can be utilized to monitor disease progression, metastasis, and exosome-based targeted therapy.


Assuntos
Exossomos/transplante , Radioisótopos do Iodo , Marcação por Isótopo , Nanomedicina Teranóstica , Animais , Linhagem Celular , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Radioisótopos do Iodo/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos
17.
Am J Physiol Heart Circ Physiol ; 316(6): H1468-H1479, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951365

RESUMO

20-Hydroxyeicosatetraenoic acid (20-HETE) was recently identified as a novel contributor of ischemia-induced neovascularization based on the key observation that pharmacological interferences of CYP4A/20-HETE decrease ischemic neovascularization. The objective of the present study is to examine whether the underlying cellular mechanisms involve endothelial progenitor cells (EPCs) and preexisting endothelial cells (ECs). We found that ischemia leads to a time-dependent increase of cyp4a12 expression and 20-HETE production, which are endothelial in origin, using immunofluorescent microscopy, Western blot analysis, and LC-MS/MS. This is accompanied by increases in the tissue stromal cell-derived factor-1α (SDF-1α) expressions as well as SDF-1α plasma levels, EPC mobilization from bone marrow, and subsequent homing to ischemic tissues. Pharmacological interferences of CYP4A/20-HETE with a 20-HETE synthesis inhibitor, dibromo-dodecenyl-methylsulfimide (DDMS), or a 20-HETE antagonist, N-(20-hydroxyeicosa-6(Z), 15(Z)-dienoyl) glycine (6, 15-20-HEDGE), significantly attenuated these increases. Importantly, we also determined that 20-HETE plays a novel role in maintaining EPC functions and increasing the expression of Oct4, Sox2, and Nanog, which are indicative of increased progenitor cell stemness. Flow cytometric analysis revealed that pharmacological interferences of CYP4A/20-HETE decrease the EPC population in culture, whereas 20-HETE increases the cultured EPC population. Furthermore, ischemia also markedly increased the proliferation, oxidative stress, and ICAM-1 expression in the preexisting EC in the hindlimb gracilis muscles. We found that these increases were markedly negated by DDMS and 6, 15-20-HEDGE. Taken together, CYP4A/20-HETE regulates ischemia-induced compensatory neovascularization via its combined actions on promoting EPC and local preexisting EC responses that are associated with increased neovascularization. NEW & NOTEWORTHY CYP4A/20-hydroxyeicosatetraenoic acid (20-HETE) was recently discovered as a novel contributor of ischemia-induced neovascularization. However, the underlying molecular and cellular mechanisms are completely unknown. Here, we show that CYP4A/20-HETE regulates the ischemic neovascularization process via its combined actions on both endothelial progenitor cells (EPCs) and preexisting endothelial cells. Moreover, this is the first study, to the best of our knowledge, that associates CYP4A/20-HETE with EPC differentiation and stemness.


Assuntos
Citocromo P-450 CYP4A/metabolismo , Células Endoteliais/enzimologia , Células Progenitoras Endoteliais/enzimologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Isquemia/enzimologia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Animais , Células Cultivadas , Quimiocina CXCL12/metabolismo , Família 4 do Citocromo P450/metabolismo , Modelos Animais de Doenças , Membro Posterior , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Tempo
18.
Nat Commun ; 10(1): 1430, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926774

RESUMO

Although clinically apparent metastasis is associated with late stages of cancer development, micro-metastatic dissemination may be an early event. However, the fate of these early disseminated tumor cells (DTC) remains elusive. We show that despite their capacity to disseminate into secondary organs, 4T1 tumor models develop overt metastasis while EMT6-tumor bearing mice clear DTCs shed from primary tumors as well as those introduced by intravenous (IV) injection. Following the surgical resection of primary EMT6 tumors, mice do not develop detectable metastasis and reject IV-injected tumor cells. In contrast, these cells readily grow and metastasize in immuno-deficient athymic or Rag2-/- mice, an effect mimicked by CD8+ T-cell depletion in immunocompetent mice. Furthermore, recombinant G-CSF or adoptive transfer of granulocytic-MDSCs isolated from 4T1 tumor-bearing mice, induce metastasis by suppressing CD8+ T-cells in EMT6-primed mice. Our studies support the concept of immune surveillance providing molecular insights into the immune mechanisms during tumor progression.


Assuntos
Imunidade , Neoplasias/imunologia , Neoplasias/patologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Humanos , Subpopulações de Linfócitos/imunologia , Camundongos , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Análise de Sobrevida , Cauda/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/cirurgia , Veias/patologia
20.
Neoplasia ; 20(10): 1070-1082, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30236892

RESUMO

BACKGROUND: Glioblastoma (GBM) was shown to relapse faster and displayed therapeutic resistance to antiangiogenic therapies (AATs) through an alternative tumor cell-driven mechanism of neovascularization called vascular mimicry (VM). We identified highly upregulated interleukin 8 (IL-8)-CXCR2 axis in tumor cells in high-grade human glioma and AAT-treated orthotopic GBM tumors. METHODS: Human GBM tissue sections and tissue array were used to ascertain the clinical relevance of CXCR2-positive tumor cells in the formation of VM. We utilized U251 and U87 human tumor cells to understand VM in an orthotopic GBM model and AAT-mediated enhancement in VM was modeled using vatalanib (anti-VEGFR2) and avastin (anti-VEGF). Later, VM was inhibited by SB225002 (CXCR2 inhibitor) in a preclinical study. RESULTS: Overexpression of IL8 and CXCR2 in human datasets and histological analysis was identified as a bonafide candidate to validate VM through in vitro and animal model studies. AAT-treated tumors displayed a higher number of CXCR2-positive GBM-stem cells with endothelial-like phenotypes. Stable knockdown of CXCR2 expression in tumor cells led to decreased tumor growth as well as incomplete VM structures in the animal models. Similar data were obtained following SB225002 treatment. CONCLUSIONS: The present study suggests that tumor cell autonomous IL-8-CXCR2 pathway is instrumental in AAT-mediated resistance and VM formation in GBM. Therefore, CXCR2 can be targeted through SB225002 and can be combined with standard therapies to improve the therapeutic outcomes in clinical trials.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/irrigação sanguínea , Receptores de Interleucina-8B/metabolismo , Animais , Bevacizumab/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Interleucina-8/metabolismo , Terapia de Alvo Molecular/métodos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Compostos de Fenilureia/farmacologia , Ftalazinas/farmacologia , Piridinas/farmacologia , Ratos Nus , Receptores de Interleucina-8B/genética , Análise Serial de Tecidos , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA