Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 36(11): 2519-2529, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390268

RESUMO

BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE: Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS: The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS: expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin ß-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION: These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
RNA , Ataxias Espinocerebelares , Animais , Ataxinas/metabolismo , Encéfalo/patologia , Camundongos , Neurônios/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ataxias Espinocerebelares/patologia
2.
Hum Mol Genet ; 29(8): 1340-1352, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32242231

RESUMO

Nemo-like kinase (NLK), an evolutionarily conserved serine/threonine kinase, is highly expressed in the brain, but its function in the adult brain remains not well understood. In this study, we identify NLK as an interactor of huntingtin protein (HTT). We report that NLK levels are significantly decreased in HD human brain and HD models. Importantly, overexpression of NLK in the striatum attenuates brain atrophy, preserves striatal DARPP32 levels and reduces mutant HTT (mHTT) aggregation in HD mice. In contrast, genetic reduction of NLK exacerbates brain atrophy and loss of DARPP32 in HD mice. Moreover, we demonstrate that NLK lowers mHTT levels in a kinase activity-dependent manner, while having no significant effect on normal HTT protein levels in mouse striatal cells, human cells and HD mouse models. The NLK-mediated lowering of mHTT is associated with enhanced phosphorylation of mHTT. Phosphorylation defective mutation of serine at amino acid 120 (S120) abolishes the mHTT-lowering effect of NLK, suggesting that S120 phosphorylation is an important step in the NLK-mediated lowering of mHTT. A further mechanistic study suggests that NLK promotes mHTT ubiquitination and degradation via the proteasome pathway. Taken together, our results indicate a protective role of NLK in HD and reveal a new molecular target to reduce mHTT levels.


Assuntos
Atrofia/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Atrofia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Humanos , Doença de Huntington/patologia , Camundongos , Neostriado/metabolismo , Neostriado/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética
3.
J Huntingtons Dis ; 8(2): 129-143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856117

RESUMO

BACKGROUND: The potential benefit of cysteamine for Huntington's disease has been demonstrated in HD animal models. Cysteamine and its derivate cystamine were shown to reduce neuropathology and prolong lifespan. Human studies have demonstrated safety, and suggestive results regarding efficacy. Despite all the studies available in vivo, there are only few in vitro studies, and the mechanism of action of cysteamine remains unclear. OBJECTIVE: The objective of this study is to assess the capacity of cysteamine for neuroprotection against mutant Huntingtin in vitro using cellular models of HD, and to provide initial data regarding mechanism of action. METHODS: We tested the neuroprotective properties of cysteamine in vitro in our primary neuron and iPSC models of HD. RESULTS: Cysteamine showed a strong neuroprotective effect (EC50 = 7.1 nM) against mutant Htt-(aa-1-586 82Q) toxicity, in a nuclear condensation cell toxicity assay. Cysteamine also rescued mitochondrial changes induced by mutant Htt. Modulation of the levels of cysteine or glutathione failed to protect neurons, suggesting that cysteamine neuroprotection is not mediated through cysteine metabolism. Taurine and Hypotaurine, which are metabolites of cysteamine can protect neurons against Htt toxicity, but the inhibition of the enzyme converting cysteamine to hypotaurine does not block either protective activity, suggesting independent protective pathways. Cysteamine has been suggested to activate BDNF secretion; however, cysteamine protection was not blocked by BDNF pathway antagonists. CONCLUSIONS: Cysteamine was strongly neuroprotective with relatively high potency. We demonstrated that the main neuroprotective pathways that have been proposed to be the mechanism of protection by cysteamine can all be blocked and still not prevent the neuroprotective effect. The results suggest the involvement of other yet-to-be-determined neuroprotective pathways.


Assuntos
Cisteamina/farmacologia , Proteína Huntingtina/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Células Cultivadas , Proteína Huntingtina/metabolismo , Proteína Huntingtina/toxicidade , Doença de Huntington , Camundongos , Mutação , Neurônios/patologia
4.
PLoS One ; 9(2): e88284, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505464

RESUMO

Phosphorylation has been shown to have a significant impact on expanded huntingtin-mediated cellular toxicity. Several phosphorylation sites have been identified on the huntingtin (Htt) protein. To find new potential therapeutic targets for Huntington's Disease (HD), we used mass spectrometry to identify novel phosphorylation sites on N-terminal Htt, expressed in HEK293 cells. Using site-directed mutagenesis we introduced alterations of phosphorylation sites in a N586 Htt construct containing 82 polyglutamine repeats. The effects of these alterations on expanded Htt toxicity were evaluated in primary neurons using a nuclear condensation assay and a direct time-lapse imaging of neuronal death. As a result of these studies, we identified several novel phosphorylation sites, validated several known sites, and discovered one phospho-null alteration, S116A, that had a protective effect against expanded polyglutamine-mediated cellular toxicity. The results suggest that S116 is a potential therapeutic target, and indicate that our screening method is useful for identifying candidate phosphorylation sites.


Assuntos
Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Mutação Puntual , Serina/genética , Sequência de Aminoácidos , Animais , Morte Celular , Células Cultivadas , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Serina/química , Serina/metabolismo
5.
J Biol Chem ; 287(29): 24460-72, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22648412

RESUMO

Huntington disease (HD) is an inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the protein Huntingtin (Htt). Currently, no cure is available for HD. The mechanisms by which mutant Htt causes neuronal dysfunction and degeneration remain to be fully elucidated. Nevertheless, mitochondrial dysfunction has been suggested as a key event mediating mutant Htt-induced neurotoxicity because neurons are energy-demanding and particularly susceptible to energy deficits and oxidative stress. SIRT3, a member of sirtuin family, is localized to mitochondria and has been implicated in energy metabolism. Notably, we found that cells expressing mutant Htt displayed reduced SIRT3 levels. trans-(-)-ε-Viniferin (viniferin), a natural product among our 22 collected naturally occurring and semisynthetic stilbenic compounds, significantly attenuated mutant Htt-induced depletion of SIRT3 and protected cells from mutant Htt. We demonstrate that viniferin decreases levels of reactive oxygen species and prevents loss of mitochondrial membrane potential in cells expressing mutant Htt. Expression of mutant Htt results in decreased deacetylase activity of SIRT3 and further leads to reduction in cellular NAD(+) levels and mitochondrial biogenesis in cells. Viniferin activates AMP-activated kinase and enhances mitochondrial biogenesis. Knockdown of SIRT3 significantly inhibited viniferin-mediated AMP-activated kinase activation and diminished the neuroprotective effects of viniferin, suggesting that SIRT3 mediates the neuroprotection of viniferin. In conclusion, we establish a novel role for mitochondrial SIRT3 in HD pathogenesis and discovered a natural product that has potent neuroprotection in HD models. Our results suggest that increasing mitochondrial SIRT3 might be considered as a new therapeutic approach to counteract HD, as well as other neurodegenerative diseases with similar mechanisms.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Benzofuranos/farmacologia , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Sirtuína 3/metabolismo , Estilbenos/farmacologia , Animais , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Camundongos , Ratos
6.
Cell Cycle ; 11(10): 2006-21, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22580459

RESUMO

Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of a polyglutamine repeat within the HD gene product, huntingtin. Huntingtin, a large (347 kDa) protein containing multiple HEAT repeats, acts as a scaffold for protein-protein interactions. Huntingtin-induced toxicity is believed to be mediated by a conformational change in expanded huntingtin, leading to protein misfolding and aggregation, aberrant protein interactions and neuronal cell death. While many non-systematic studies of huntingtin interactions have been reported, they were not designed to identify and quantify the changes in the huntingtin interactome induced by polyglutamine expansion. We used tandem affinity purification and quantitative proteomics to compare and quantify interactions of normal or expanded huntingtin isolated from a striatal cell line. We found that proteins preferentially interacting with expanded huntingtin are enriched for intrinsically disordered proteins, consistent with previously suggested roles of such proteins in neurodegenerative disorders. Our functional analysis indicates that proteins related to energy production, protein trafficking, RNA post-transcriptional modifications and cell death were significantly enriched among preferential interactors of expanded huntingtin. Expanded huntingtin interacted with many mitochondrial proteins, including AIFM1, consistent with a role for mitochondrial dysfunction in HD. Furthermore, expanded huntingtin interacted with the stress granule-associated proteins Caprin-1 and G3BP and redistributed to RNA stress granules under ER-stress conditions. These data demonstrate that a number of key cellular functions and networks may be disrupted by abnormal interactions of expanded huntingtin and highlight proteins and pathways that may be involved in HD cellular pathogenesis and that may serve as therapeutic targets.


Assuntos
Fator de Indução de Apoptose/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Proteômica , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , DNA Helicases , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , RNA/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA
7.
J Biol Chem ; 287(19): 16017-28, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22433867

RESUMO

Huntington disease is a genetic neurodegenerative disorder that arises from an expanded polyglutamine region in the N terminus of the HD gene product, huntingtin. Protein inclusions comprised of N-terminal fragments of mutant huntingtin are a characteristic feature of disease, though are likely to play a protective role rather than a causative one in neurodegeneration. Soluble oligomeric assemblies of huntingtin formed early in the aggregation process are candidate toxic species in HD. In the present study, we established an in vitro system to generate recombinant huntingtin in mammalian cells. Using both denaturing and native gel analysis, we have identified novel oligomeric forms of mammalian-derived expanded huntingtin exon-1 N-terminal fragment. These species are transient and were not previously detected using bacterially expressed exon-1 protein. Importantly, these species are recognized by 3B5H10, an antibody that recognizes a two-stranded hairpin conformation of expanded polyglutamine believed to be associated with a toxic form of huntingtin. Interestingly, comparable oligomeric species were not observed for expanded huntingtin shortstop, a 117-amino acid fragment of huntingtin shown previously in mammalian cell lines and transgenic mice, and here in primary cortical neurons, to be non-toxic. Further, we demonstrate that expanded huntingtin shortstop has a reduced ability to form amyloid-like fibrils characteristic of the aggregation pathway for toxic expanded polyglutamine proteins. Taken together, these data provide a possible candidate toxic species in HD. In addition, these studies demonstrate the fundamental differences in early aggregation events between mutant huntingtin exon-1 and shortstop proteins that may underlie the differences in toxicity.


Assuntos
Éxons/genética , Proteínas do Tecido Nervoso/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Western Blotting , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Peptídeos/genética , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
8.
Nat Med ; 18(1): 153-8, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22179319

RESUMO

Huntington's disease is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in huntingtin (HTT) protein. We previously showed that calorie restriction ameliorated Huntington's disease pathogenesis and slowed disease progression in mice that model Huntington's disease (Huntington's disease mice). We now report that overexpression of sirtuin 1 (Sirt1), a mediator of the beneficial metabolic effects of calorie restriction, protects neurons against mutant HTT toxicity, whereas reduction of Sirt1 exacerbates mutant HTT toxicity. Overexpression of Sirt1 improves motor function, reduces brain atrophy and attenuates mutant-HTT-mediated metabolic abnormalities in Huntington's disease mice. Further mechanistic studies suggested that Sirt1 prevents the mutant-HTT-induced decline in brain-derived neurotrophic factor (BDNF) concentrations and the signaling of its receptor, TrkB, and restores dopamine- and cAMP-regulated phosphoprotein, 32 kDa (DARPP32) concentrations in the striatum. Sirt1 deacetylase activity is required for Sirt1-mediated neuroprotection in Huntington's disease cell models. Notably, we show that mutant HTT interacts with Sirt1 and inhibits Sirt1 deacetylase activity, which results in hyperacetylation of Sirt1 substrates such as forkhead box O3A (Foxo3a), thereby inhibiting its pro-survival function. Overexpression of Sirt1 counteracts the mutant-HTT-induced deacetylase deficit, enhances the deacetylation of Foxo3a and facilitates cell survival. These findings show a neuroprotective role for Sirt1 in mammalian Huntington's disease models and open new avenues for the development of neuroprotective strategies in Huntington's disease.


Assuntos
Encéfalo/metabolismo , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Sirtuína 1/metabolismo , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina , Doença de Huntington/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Ratos , Receptor trkB/metabolismo , Transdução de Sinais , Sirtuína 1/genética
9.
Brain Res Mol Brain Res ; 142(2): 97-106, 2005 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-16290312

RESUMO

Current understanding of IGF-I-mediated neuroprotection implies the activation of phosphatidylinositol-3-kinase (PI-3K), which leads to the activation of Akt/Protein Kinase B. In non-neuronal cells, Akt phosphorylates and activates the transcription factor CREB, implicated in the transcription of the anti-apoptotic bcl-2 gene. This paper further analyses the anti-apoptotic IGF-I action in neurons. We show that IGF-I protects cortical neurons against ceramide-induced apoptosis. Ceramide decreases Akt phosphorylation during apoptotic process whereas a simultaneous treatment with IGF-I increases Akt phosphorylation. Analysis of the signal transduction pathways revealed that IGF-I induces CREB phosphorylation via PI-3K and ERK, whereas simultaneous ceramide and IGF-I treatment decreases CREB phosphorylation. Although an overexpression of Bcl-2 protects cortical neurons against ceramide-induced apoptosis, our data indicate that the Bcl-2 protein level is not modulated during IGF-I, ceramide and/or LY294002 treatment. In consequence, we demonstrated that IGF protects neurons against ceramide-induced apoptosis and that IGF-I protection involves the PI-3K/Akt and ERK pathways; this protection may be independent of CREB and Bcl-2.


Assuntos
Apoptose/efeitos dos fármacos , Córtex Cerebral/citologia , Fator de Crescimento Insulin-Like I/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Western Blotting/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ceramidas/toxicidade , Cromonas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Genes bcl-2/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Imuno-Histoquímica/métodos , Camundongos , Camundongos Transgênicos , Morfolinas/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA