Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cancer Res Commun ; 4(4): 1082-1099, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625038

RESUMO

The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE: Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.


Assuntos
Cromatina , Neoplasias , Cromatina/genética , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Proteólise , Genômica
2.
Sci Adv ; 10(9): eadj5107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427725

RESUMO

Cell fate decisions are achieved with gene expression changes driven by lineage-specific transcription factors (TFs). These TFs depend on chromatin remodelers including the Brahma-related gene 1 (BRG1)-associated factor (BAF) complex to activate target genes. BAF complex subunits are essential for development and frequently mutated in cancer. Thus, interrogating how BAF complexes contribute to cell fate decisions is critical for human health. We examined the requirement for the catalytic BAF subunit BRG1 in neural progenitor cell (NPC) specification from human embryonic stem cells. During the earliest stages of differentiation, BRG1 was required to establish chromatin accessibility at neuroectoderm-specific enhancers. Depletion of BRG1 dorsalized NPCs and promoted precocious neural crest specification and enhanced neuronal differentiation. These findings demonstrate that BRG1 mediates NPC specification by ensuring proper expression of lineage-specific TFs and appropriate activation of their transcriptional programs.


Assuntos
Cromatina , Placa Neural , Humanos , Cromatina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Placa Neural/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
3.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801810

RESUMO

The SWI/SNF complex remodels chromatin in an ATP-dependent manner through the subunits BRG1 and BRM. Chromatin remodeling alters nucleosome structure to change gene expression; however, aberrant remodeling can result in cancer. We identified BCL7 proteins as critical SWI/SNF members that drive BRG1-dependent gene expression changes. BCL7s have been implicated in B-cell lymphoma, but characterization of their functional role within the SWI/SNF complex has been limited. This study implicates their function alongside BRG1 to drive large-scale changes in gene expression. Mechanistically, the BCL7 proteins bind to the HSA domain of BRG1 and require this domain for binding to chromatin. BRG1 proteins without the HSA domain fail to interact with the BCL7 proteins and have severely reduced chromatin remodeling activity. These results link the HSA domain and the formation of a functional SWI/SNF remodeling complex through the interaction with BCL7 proteins. These data highlight the importance of correct formation of the SWI/SNF complex to drive critical biological functions, as losses of individual accessory members or protein domains can cause loss of complex function.


Assuntos
Proteínas Cromossômicas não Histona , Neoplasias , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Montagem e Desmontagem da Cromatina/genética , Cromatina , Expressão Gênica
4.
Mol Cell ; 82(4): 803-815.e5, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35077705

RESUMO

The hormone-stimulated glucocorticoid receptor (GR) modulates transcription by interacting with thousands of enhancers and GR binding sites (GBSs) throughout the genome. Here, we examined the effects of GR binding on enhancer dynamics and investigated the contributions of individual GBSs to the hormone response. Hormone treatment resulted in genome-wide reorganization of the enhancer landscape in breast cancer cells. Upstream of the DDIT4 oncogene, GR bound to four sites constituting a hormone-dependent super enhancer. Three GBSs were required as hormone-dependent enhancers that differentially promoted histone acetylation, transcription frequency, and burst size. Conversely, the fourth site suppressed transcription and hormone treatment alleviated this suppression. GR binding within the super enhancer promoted a loop-switching mechanism that allowed interaction of the DDIT4 TSS with the active GBSs. The unique functions of each GR binding site contribute to hormone-induced transcriptional heterogeneity and demonstrate the potential for targeted modulation of oncogene expression.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Dexametasona/farmacologia , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
5.
Epigenetics ; 16(3): 289-299, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32660355

RESUMO

Studies have suggested that abrogated expression of detoxification enzymes, UGT2B15 and UGT2B17, are associated with prostate tumour risk and progression. We investigated the role of EGF on the expression of these enzymes since it interacts with signalling pathways to also affect prostate tumour progression and is additionally associated with decreased DNA methylation. The expression of UGT2B15, UGT2B17, de novo methyltransferases, DNMT3A and DNMT3B was assessed in prostate cancer cells (LNCaP) treated with EGF, an EGFR inhibitor PD16893, and the methyltransferase inhibitor, 5-azacytidine, respectively. The results showed that EGF treatment decreased levels of expression of all four genes and that their expression was reversed by PD16893. Treatment with 5-azacytidine, markedly decreased expression of UGT2B15 and UGT2B17 over 85% as well as significantly decreased expression of DNMT3B, but not the expression of DNMT3A. DNMT3B siRNA treated LNCaP cells had decreased expression of UGT2B15 and UGT2B17, while DNMT3A siRNA treated cells had only moderately decreased UGT2B15 expression. Treatment with DNMT methyltransferase inhibitor, RG108, significantly decreased UGT2B17 expression. Additionally, methylation differences between prostate cancer samples and benign prostate samples from an Illumina 450K Methylation Array study were assessed. The results taken together suggest that hypomethylation of the UGT2B15 and UGT2B17 genes contributes to increased risk of prostate cancer and may provide a putative biomarker or epigenetic target for chemotherapeutics. Mechanistic studies are warranted to determine the role of the methylation marks in prostate cancer.


Assuntos
Metilação de DNA , Glucuronosiltransferase , Neoplasias da Próstata , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/genética , Neoplasias da Próstata/genética
6.
Sci Adv ; 6(47)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33219026

RESUMO

Induced pluripotent stem cells (iPSCs) can be derived from differentiated cells, enabling the generation of personalized disease models by differentiating patient-derived iPSCs into disease-relevant cell lines. While genetic variability between different iPSC lines affects differentiation potential, how this variability in somatic cells affects pluripotent potential is less understood. We generated and compared transcriptomic data from 72 dermal fibroblast-iPSC pairs with consistent variation in reprogramming efficiency. By considering equal numbers of samples from self-reported African Americans and White Americans, we identified both ancestry-dependent and ancestry-independent transcripts associated with reprogramming efficiency, suggesting that transcriptomic heterogeneity can substantially affect reprogramming. Moreover, reprogramming efficiency-associated genes are involved in diverse dynamic biological processes, including cancer and wound healing, and are predictive of 5-year breast cancer survival in an independent cohort. Candidate genes may provide insight into mechanisms of ancestry-dependent regulation of cell fate transitions and motivate additional studies for improvement of reprogramming.


Assuntos
Fenômenos Biológicos , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma
7.
Commun Biol ; 3(1): 126, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170217

RESUMO

Steroid hormone receptors such as the Glucocorticoid Receptor (GR) mediate transcriptional responses to hormones and are frequently targeted in the treatment of human diseases. Experiments using bulk populations of cells have provided a detailed picture of the global transcriptional hormone response but are unable to interrogate cell-to-cell transcriptional heterogeneity. To examine the glucocorticoid response in individual cells, we performed single cell RNA sequencing (scRNAseq) in a human breast cancer cell line. The transcriptional response to hormone was robustly detected in individual cells and scRNAseq provided additional statistical power to identify over 100 GR-regulated genes that were not detected in bulk RNAseq. scRNAseq revealed striking cell-to-cell variability in the hormone response. On average, individual hormone-treated cells showed a response at only 30% of the total set of GR target genes. Understanding the basis of this heterogeneity will be critical for the development of more precise models of steroid hormone signaling.


Assuntos
Neoplasias da Mama/genética , Dexametasona/farmacologia , Heterogeneidade Genética/efeitos dos fármacos , Glucocorticoides/farmacologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Glucocorticoides/genética , Transcrição Gênica/efeitos dos fármacos
8.
Curr Opin Endocr Metab Res ; 15: 8-14, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35128145

RESUMO

Breast cancers are a diverse group of diseases and are often characterized by their expression of receptors for hormones such as estrogen and progesterone. Recently another steroid hormone receptor, the glucocorticoid receptor (GR) has been shown to be a key player in breast cancer progression, metastasis, and treatment. These receptors bind to chromatin to elicit transcriptional changes within cells, which are often inhibited by the structure of chromatin itself. Chromatin remodeling proteins, such as Brahma-related gene 1 (BRG1), function to overcome this physical inhibition of transcription factor function and have been linked to many cancers including breast cancer. Recent efforts to understand the interactions of BRG1 and GR, including genomic and single cell analyses, within breast cancers may give insight into personalized medicine and other potential treatments.

9.
J Biol Chem ; 295(5): 1271-1287, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31806706

RESUMO

Proteasome activity is required for diverse cellular processes, including transcriptional and epigenetic regulation. However, inhibiting proteasome activity can lead to an increase in transcriptional output that is correlated with enriched levels of trimethyl H3K4 and phosphorylated forms of RNA polymerase (Pol) II at the promoter and gene body. Here, we perform gene expression analysis and ChIP followed by sequencing (ChIP-seq) in MCF-7 breast cancer cells treated with the proteasome inhibitor MG132, and we further explore genome-wide effects of proteasome inhibition on the chromatin state and RNA Pol II transcription. Analysis of gene expression programs and chromatin architecture reveals that chemically inhibiting proteasome activity creates a distinct chromatin state, defined by spreading of the H3K4me3 mark into the gene bodies of differentially-expressed genes. The distinct H3K4me3 chromatin profile and hyperacetylated nucleosomes at transcription start sites establish a chromatin landscape that facilitates recruitment of Ser-5- and Ser-2-phosphorylated RNA Pol II. Subsequent transcriptional events result in diverse gene expression changes. Alterations of H3K36me3 levels in the gene body reflect productive RNA Pol II elongation of transcripts of genes that are induced, underscoring the requirement for proteasome activity at multiple phases of the transcriptional cycle. Finally, by integrating genomics data and pathway analysis, we find that the differential effects of proteasome inhibition on the chromatin state modulate genes that are fundamental for cancer cell survival. Together, our results uncover underappreciated downstream effects of proteasome inhibitors that may underlie targeting of distinct chromatin states and key steps of RNA Pol II-mediated transcription in cancer cells.


Assuntos
Cromatina/metabolismo , Epigênese Genética/efeitos dos fármacos , Leupeptinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos , Acetilação , Cromatina/efeitos dos fármacos , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Células MCF-7 , Nucleossomos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/genética , Domínios Proteicos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos
10.
Elife ; 82019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31033435

RESUMO

The SWI/SNF complex is a critical regulator of pluripotency in human embryonic stem cells (hESCs), and individual subunits have varied and specific roles during development and in diseases. The core subunit SMARCB1 is required for early embryonic survival, and mutations can give rise to atypical teratoid/rhabdoid tumors (AT/RTs) in the pediatric central nervous system. We report that in contrast to other studied systems, SMARCB1 represses bivalent genes in hESCs and antagonizes chromatin accessibility at super-enhancers. Moreover, and consistent with its established role as a CNS tumor suppressor, we find that SMARCB1 is essential for neural induction but dispensable for mesodermal or endodermal differentiation. Mechanistically, we demonstrate that SMARCB1 is essential for hESC super-enhancer silencing in neural differentiation conditions. This genomic assessment of hESC chromatin regulation by SMARCB1 reveals a novel positive regulatory function at super-enhancers and a unique lineage-specific role in regulating hESC differentiation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Diferenciação Celular/genética , Criança , Cromatina/genética , Endoderma , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Humanos , Mesoderma , Mutação/genética , Tumor Rabdoide/genética
11.
Elife ; 72018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29792595

RESUMO

The Glucocorticoid Receptor (GR) alters transcriptional activity in response to hormones by interacting with chromatin at GR binding sites (GBSs) throughout the genome. Our work in human breast cancer cells identifies three classes of GBSs with distinct epigenetic characteristics and reveals that BRG1 interacts with GBSs prior to hormone exposure. The GBSs pre-occupied by BRG1 are more accessible and transcriptionally active than other GBSs. BRG1 is required for a proper and robust transcriptional hormone response and knockdown of BRG1 blocks recruitment of the pioneer factors FOXA1 and GATA3 to GBSs. Finally, GR interaction with FOXA1 and GATA3 binding sites was restricted to sites pre-bound by BRG1. These findings demonstrate that BRG1 establishes specialized chromatin environments that define multiple classes of GBS. This in turn predicts that GR and other transcriptional activators function via multiple distinct chromatin-based mechanisms to modulate the transcriptional response.


Assuntos
Cromatina/metabolismo , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Glucocorticoides/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais
12.
Oncotarget ; 8(33): 54925-54938, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903392

RESUMO

Lymphatic vasculature is an important part of the cardiovascular system with multiple functions, including regulation of the return of interstitial fluid (lymph) to the bloodstream, immune responses, and fat absorption. Consequently, lymphatic vasculature defects are involved in many pathological processes, including tumor metastasis and lymphedema. BRG1 is an important player in the developmental window when the lymphatic system is initiated. In the current study, we used tamoxifen inducible Rosa26CreERT2-BRG1floxed/floxed mice that allowed temporal analysis of the impact of BRG1 inactivation in the embryo. The BRG1floxed/floxed/Cre-TM embryos exhibited edema and hemorrhage at embryonic day-13 and began to die. BRG1 deficient embryos had abnormal lymphatic sac linings with fewer LYVE1 positive lymphatic endothelial cells. Indeed, loss of BRG1 attenuated expression of a subset of lymphatic genes in-vivo. Furthermore, BRG1 binds at the promoters of COUP-TFII and LYVE1, suggesting that BRG1 modulates expression of these genes in the developing embryos. Conversely, re-expression of BRG1 in cells lacking endogenous BRG1 resulted in induction of lymphatic gene expression in-vitro, suggesting that BRG1 was both required and sufficient for lymphatic gene expression. These studies provide important insights into intrinsic regulation of BRG1-mediated lymphatic-gene expression, and further an understanding of lymphatic gene dysregulation in lymphedema and other disease conditions.

13.
Cell Commun Signal ; 14(1): 18, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27582276

RESUMO

BACKGROUND: The phytoestrogen, genistein at low doses nongenomically activates mitogen-activated protein kinase p44/42 (MAPKp44/42) via estrogen receptor alpha (ERα) leading to proliferation of human uterine leiomyoma cells. In this study, we evaluated if MAPKp44/42 could activate downstream effectors such as mitogen- and stress-activated protein kinase 1 (MSK1), which could then epigenetically modify histone H3 by phosphorylation following a low dose (1 µg/ml) of genistein. RESULTS: Using hormone-responsive immortalized human uterine leiomyoma (ht-UtLM) cells, we found that genistein activated MAPKp44/42 and MSK1, and also increased phosphorylation of histone H3 at serine10 (H3S10ph) in ht-UtLM cells. Colocalization of phosphorylated MSK1 and H3S10ph was evident by confocal microscopy in ht-UtLM cells (r = 0.8533). Phosphorylation of both MSK1and H3S10ph was abrogated by PD98059 (PD), a MEK1 kinase inhibitor, thereby supporting genistein's activation of MSK1 and Histone H3 was downstream of MAPKp44/42. In proliferative (estrogenic) phase human uterine fibroid tissues, phosphorylated MSK1 and H3S10ph showed increased immunoexpression compared to normal myometrial tissues, similar to results observed in in vitro studies following low-dose genistein administration. Real-time RT-PCR arrays showed induction of growth-related transcription factor genes, EGR1, Elk1, ID1, and MYB (cMyb) with confirmation by western blot, downstream of MAPK in response to low-dose genistein in ht-UtLM cells. Additionally, genistein induced associations of promoter regions of the above transcription factors with H3S10ph as evidenced by Chromatin Immunoprecipitation (ChIP) assays, which were inhibited by PD. Therefore, genistein epigenetically modified histone H3 by phosphorylation of serine 10, which was regulated by MSK1 and MAPK activation. CONCLUSION: Histone H3 phosphorylation possibly represents a mechanism whereby increased transcriptional activation occurs following low-dose genistein exposure.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética , Genisteína/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
14.
PLoS Genet ; 12(8): e1006224, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27487356

RESUMO

Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.


Assuntos
Elementos Antissenso (Genética)/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Elementos Antissenso (Genética)/biossíntese , Cromatina/genética , Ilhas de CpG/genética , Regulação Fúngica da Expressão Gênica , Genômica , Código das Histonas/genética , Histonas/genética , Humanos , Proteínas Nucleares/biossíntese , Nucleossomos/genética , Ligação Proteica/genética , Alinhamento de Sequência
15.
Mol Cell Biol ; 36(15): 1990-2010, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185875

RESUMO

SWI/SNF (switching/sucrose nonfermenting)-dependent chromatin remodeling establishes coordinated gene expression programs during development, yet important functional details remain to be elucidated. We show that the Brg1 (Brahma-related gene 1; Smarca4) ATPase is globally expressed at high levels during postimplantation development and its conditional ablation, beginning at gastrulation, results in increased apoptosis, growth retardation, and, ultimately, embryonic death. Global gene expression analysis revealed that genes upregulated in Rosa26CreERT2; Brg1(flox/flox) embryos (here referred to as Brg1(d/d) embryos to describe embryos with deletion of the Brg1(flox/flox) alleles) negatively regulate cell cycle progression and cell growth. In addition, the p53 (Trp53) protein, which is virtually undetectable in early wild-type embryos, accumulated in the Brg1(d/d) embryos and activated the p53-dependent pathways. Using P19 cells, we show that Brg1 and CHD4 (chromodomain helicase DNA binding protein 4) coordinate to control target gene expression. Both proteins physically interact and show a substantial overlap of binding sites at chromatin-accessible regions adjacent to genes differentially expressed in the Brg1(d/d) embryos. Specifically, Brg1 deficiency results in reduced levels of the repressive histone H3 lysine K27 trimethylation (H3K27me3) histone mark and an increase in the amount of open chromatin at the regulatory region of the p53 and p21 (Cdkn1a) genes. These results provide insights into the mechanisms by which Brg1 functions, which is in part via the p53 program, to constrain gene expression and facilitate rapid embryonic growth.


Assuntos
Pontos de Checagem do Ciclo Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Desenvolvimento Embrionário , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Proteínas/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
16.
Genome Biol ; 17: 36, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26922637

RESUMO

BACKGROUND: Transcription factor-dependent cellular reprogramming is integral to normal development and is central to production of induced pluripotent stem cells. This process typically requires pioneer transcription factors (TFs) to induce de novo formation of enhancers at previously closed chromatin. Mechanistic information on this process is currently sparse. RESULTS: Here we explore the mechanistic basis by which GATA3 functions as a pioneer TF in a cellular reprogramming event relevant to breast cancer, the mesenchymal to epithelial transition (MET). In some instances, GATA3 binds previously inaccessible chromatin, characterized by stable, positioned nucleosomes where it induces nucleosome eviction, alters local histone modifications, and remodels local chromatin architecture. At other loci, GATA3 binding induces nucleosome sliding without concomitant generation of accessible chromatin. Deletion of the transactivation domain retains the chromatin binding ability of GATA3 but cripples chromatin reprogramming ability, resulting in failure to induce MET. CONCLUSIONS: These data provide mechanistic insights into GATA3-mediated chromatin reprogramming during MET, and suggest unexpected complexity to TF pioneering. Successful reprogramming requires stable binding to a nucleosomal site; activation domain-dependent recruitment of co-factors including BRG1, the ATPase subunit of the SWI/SNF chromatin remodeling complex; and appropriate genomic context. The resulting model provides a new conceptual framework for de novo enhancer establishment by a pioneer TF.


Assuntos
Neoplasias da Mama/genética , Reprogramação Celular/genética , Montagem e Desmontagem da Cromatina/genética , Fator de Transcrição GATA3/genética , Neoplasias da Mama/patologia , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Nucleossomos/genética , Fatores de Transcrição/genética
17.
Mol Cell Biol ; 35(18): 3225-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149387

RESUMO

LIN28 is an evolutionarily conserved RNA-binding protein with critical functions in developmental timing and cancer. However, the molecular mechanisms underlying LIN28's oncogenic properties are yet to be described. RNA-protein immunoprecipitation coupled with genome-wide sequencing (RIP-Seq) analysis revealed significant LIN28 binding within 843 mRNAs in breast cancer cells. Many of the LIN28-bound mRNAs are implicated in the regulation of RNA and cell metabolism. We identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein with multiple roles in mRNA metabolism, as a LIN28-interacting partner. Subsequently, we used a custom computational method to identify differentially spliced gene isoforms in LIN28 and hnRNP A1 small interfering RNA (siRNA)-treated cells. The results reveal that these proteins regulate alternative splicing and steady-state mRNA expression of genes implicated in aspects of breast cancer biology. Notably, cells lacking LIN28 undergo significant isoform switching of the ENAH gene, resulting in a decrease in the expression of the ENAH exon 11a isoform. The expression of ENAH isoform 11a has been shown to be elevated in breast cancers that express HER2. Intriguingly, analysis of publicly available array data from the Cancer Genome Atlas (TCGA) reveals that LIN28 expression in the HER2 subtype is significantly different from that in other breast cancer subtypes. Collectively, our data suggest that LIN28 may regulate splicing and gene expression programs that drive breast cancer subtype phenotypes.


Assuntos
Processamento Alternativo/genética , Neoplasias da Mama/classificação , Regulação Neoplásica da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Células MCF-7 , Vírus do Tumor Mamário do Camundongo/genética , Proteínas dos Microfilamentos/genética , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/biossíntese , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Análise de Sequência de DNA , Sequências Repetidas Terminais/genética
18.
Mol Cell Biol ; 35(16): 2799-817, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055322

RESUMO

BRG1, the central ATPase of the human SWI/SNF complex, is critical for biological functions, including nuclear receptor (NR)-regulated transcription. Analysis of BRG1 mutants demonstrated that functional motifs outside the ATPase domain are important for transcriptional activity. In the course of experiments examining protein interactions mediated through these domains, Ku70 (XRCC6) was found to associate with a BRG1 fragment encompassing the conserved helicase-SANT-associated (HSA) and BRK domains of BRG1. Subsequent transcriptional activation assays and chromatin immunoprecipitation studies showed that Ku70/86 and components of the topoisomerase IIß (TOP2ß)/poly(ADP ribose) polymerase 1 (PARP1) complex are necessary for NR-mediated SWI/SNF-dependent transcriptional activation from endogenous promoters. In addition to establishing Ku-BRG1 binding and TOP2ß/PARP1 recruitment by nuclear receptor transactivation, we demonstrate that the transient appearance of glucocorticoid receptor (GR)/BRG1-dependent, TOP2ß-mediated double-strand DNA breaks is required for efficient GR-stimulated transcription. Taken together, these results suggest that a direct interaction between Ku70/86 and BRG1 brings together SWI/SNF remodeling capabilities and TOP2ß activity to enhance the transcriptional response to hormone stimulation.


Assuntos
Antígenos Nucleares/metabolismo , DNA Helicases/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , DNA Helicases/química , Humanos , Autoantígeno Ku , Proteínas Nucleares/química , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/química
19.
Mol Endocrinol ; 29(3): 384-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25594248

RESUMO

The pervasive nature of estrogenic industrial and dietary compounds is a growing health concern linked to cancer, obesity, and neurological disorders. Prior analyses of endocrine disruptor action have focused primarily on the short-term consequences of exposure. However, these studies are unlikely to reflect the consequences of constant exposures common to industrialized countries. Here we examined the global effects of long-term endocrine disruption on gene transcription and estrogen signaling. Estrogen-dependent breast cancer cell lines were chronically treated with physiologically relevant levels of bisphenol A or genistein for more than 70 passages. Microarray analysis demonstrated global reprogramming of the transcriptome when compared with a similarly cultured control cell line. Estrogen-responsive targets showed diminished expression in both the presence and absence of estrogen. Estrogen receptor recruitment, H3K4 monomethylation, and deoxyribonuclease accessibility were reduced at nearby response elements. Based on these observations, we investigated the potential of long-term endocrine disruptor exposure to initiate persistent transcriptional reprogramming. Culture of chronically exposed cell lines in the absence of the endocrine disruptors did not reverse many of the signaling defects that accumulated during treatment. Taken together, these data demonstrate that chronic exposure to endocrine disrupting compounds can permanently alter physiological hormone signaling.


Assuntos
Disruptores Endócrinos/toxicidade , Estrogênios/farmacologia , Linhagem Celular Tumoral , Proteína 3 de Resposta de Crescimento Precoce/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Humanos , Ligantes , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Stem Cells ; 32(6): 1527-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24578347

RESUMO

Cyclin D1 plays an important role in the regulation of cellular proliferation and its expression is activated during gastrulation in the mouse; however, it remains unknown how cyclin D1 expression is regulated during early embryonic development. Here, we define the role of germ cell nuclear factor (GCNF) in the activation of cyclin D1 expression during embryonic stem cell (ESC) differentiation as a model of early development. During our study of GCNF knockout (GCNF(-) (/) (-) ) ESC, we discovered that loss of GCNF leads to the repression of cyclin D1 activation during ESC differentiation. This was determined to be an indirect effect of deregulation Mir302a, which is a cyclin D1 suppressor via binding to the 3'UTR of cyclin D1 mRNA. Moreover, we showed that Mir302 is a target gene of GCNF that inhibits Mir302 expression by binding to a DR0 element within its promoter. Inhibition of Mir302a using Mir302 inhibitor during differentiation of GCNF(-) (/) (-) ESCs restored cyclin D1 expression. Similarly over-expression of GCNF during differentiation of GCNF(-) (/) (-) ESCs rescued the inhibition of Mir302a expression and the activation of cyclin D1. These results reveal that GCNF plays a key role in regulating activation of cyclin D1 expression via inhibition of Mir302a.


Assuntos
Diferenciação Celular/genética , Ciclina D1/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Membro 1 do Grupo A da Subfamília 6 de Receptores Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proliferação de Células , Forma Celular , Ensaio de Unidades Formadoras de Colônias , Ciclina D1/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Membro 1 do Grupo A da Subfamília 6 de Receptores Nucleares/deficiência , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA