Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 163(7): e837-e849, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561389

RESUMO

ABSTRACT: Rheumatoid arthritis is frequently associated with chronic pain that still remains difficult to treat. Targeting nerve growth factor (NGF) seems very effective to reduce pain in at least osteoarthritis and chronic low back pain but leads to some potential adverse events. Our aim was to better understand the involvement of the intracellular signalling pathways activated by NGF through its specific tyrosine kinase type A (TrkA) receptor in the pathophysiology of rheumatoid arthritis using the complete Freund adjuvant model in our knock-in TrkA/C mice. Our multimodal study demonstrated that knock-in TrkA/C mice exhibited a specific decrease of mechanical allodynia, weight-bearing deficit, peptidergic (CGRP+) and sympathetic (TH+) peripheral nerve sprouting in the joints, a reduction in osteoclast activity and bone resorption markers, and a decrease of CD68-positive cells in the joint with no apparent changes in joint inflammation compared with wild-type mice after arthritis. Finally, transcriptomic analysis shows several differences in dorsal root ganglion mRNA expression of putative mechanotransducers, such as acid-sensing ionic channel 3 and TWIK-related arachidonic acid activated K+ channel, as well as intracellular pathways, such as c-Jun, in the joint or dorsal root ganglia. These results suggest that TrkA-specific intracellular signalling pathways are specifically involved in mechanical hypersensitivity and bone alterations after arthritis using TrkA/C mice.


Assuntos
Artrite Reumatoide , Hiperalgesia , Receptor trkA , Transdução de Sinais , Animais , Artrite Reumatoide/complicações , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor trkA/genética
2.
Sci Rep ; 10(1): 9146, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499543

RESUMO

BACKGROUND: Infectious gastroenteritis is a risk factor for the development of post-infectious Irritable Bowel Syndrome (PI-IBS). Recent clinical studies reported a higher prevalence of the intestinal parasite Blastocystis in IBS patients. Using a rat model, we investigated the possible association between Blastocystis infection, colonic hypersensitivity (CHS), behavioral disturbances and gut microbiota changes. METHODS: Rats were orally infected with Blastocystis subtype 4 (ST4) cysts, isolated from human stool samples. Colonic sensitivity was assessed by colorectal distension and animal behavior with an automatic behavior recognition system (PhenoTyper), the Elevated Plus Maze test and the Forced Swimming tests. Feces were collected at different time points after infection to study microbiota composition by 16 S rRNA amplicon sequencing and for short-chain fatty acid (SFCA) analysis. RESULTS: Blastocystis-infected animals had non-inflammatory CHS with increased serine protease activity. Infection was also associated with anxiety- and depressive-like behaviors. Analysis of fecal microbiota composition showed an increase in bacterial richness associated with altered microbiota composition. These changes included an increase in the relative abundance of Oscillospira and a decrease in Clostridium, which seem to be associated with lower levels of SCFAs in the feces from infected rats. CONCLUSIONS: Our findings suggest that experimental infection of rats with Blastocystis mimics IBS symptoms with the establishment of CHS related to microbiota and metabolic shifts.


Assuntos
Comportamento Animal/fisiologia , Infecções por Blastocystis/patologia , Blastocystis/patogenicidade , Doenças do Colo/complicações , Disbiose/etiologia , Animais , Área Sob a Curva , Infecções por Blastocystis/complicações , Doenças do Colo/patologia , Modelos Animais de Doenças , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , Fezes/parasitologia , Microbiota , Curva ROC , Ratos , Ratos Wistar , Serina Proteases/metabolismo
3.
Pain ; 161(5): 1109-1123, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31977937

RESUMO

Mechanical allodynia is a cardinal sign of several inflammatory pain disorders where nerve growth factor, a prototypic neurotrophin, plays a crucial role by binding to TrkA receptors. Here, we took the advantage of our generated knock-in mouse model expressing a chimeric TrkA/TrkC receptor that seems to not specifically develop mechanical allodynia after inflammation, to identify the TrkA downstream pathways involved in this phenomenon. We confirmed and extended that disrupting TrkA-specific pathways leads to a specific deficit in mechanical hypersensitivity development after somatic (systemic nerve growth factor administration and paw incision) and, to a lesser extent, visceral injuries. Despite a deficit in thin, mainly peptidergic, fibre innervation in TrkAC mice, thermal hyperalgesia development was not different from WT mice. Inflammatory reaction (oedema, IL-6 content), pain behaviours after intraplantar capsaicin, as well as TRPV1 calcium imaging response of dorsal root ganglion neurons were similar between TrkAC and WT mice. This deficiency in mechanical allodynia development in TrkAC mice is likely due to the alteration of the expression of different TrkA transduction pathways (ie, Akt, p38 MAPK, and c-Jun) especially p38 MAPK, in the dorsal root ganglion cell bodies, ultimately leading to an alteration of at least, ASIC3 channel overexpression, known to participate in nociceptor mechanosensory function.


Assuntos
Hiperalgesia , Animais , Gânglios Espinais , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases , Camundongos , Fator de Crescimento Neural/genética , Receptor trkA/genética , Receptor trkC , Proteínas Quinases p38 Ativadas por Mitógeno
4.
J Neural Transm (Vienna) ; 127(4): 445-465, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31552496

RESUMO

Among the various regulators of the nervous system, the gut microbiota has been recently described to have the potential to modulate neuronal cells activation. While bacteria-derived products can induce aversive responses and influence pain perception, recent work suggests that "abnormal" microbiota is associated with neurological diseases such as Alzheimer's, Parkinson's disease or autism spectrum disorder (ASD). Here we review how the gut microbiota modulates afferent sensory neurons function and pain, highlighting the role of the microbiota/gut/brain axis in the control of behaviors and neurological diseases. We outline the changes in gut microbiota, known as dysbiosis, and their influence on painful gastrointestinal disorders. Furthermore, both direct host/microbiota interaction that implicates activation of "pain-sensing" neurons by metabolites, or indirect communication via immune activation is discussed. Finally, treatment options targeting the gut microbiota, including pre- or probiotics, will be proposed. Further studies on microbiota/nervous system interaction should lead to the identification of novel microbial ligands and host receptor-targeted drugs, which could ultimately improve chronic pain management and well-being.


Assuntos
Transtorno do Espectro Autista , Dor Crônica , Cistite Intersticial , Disbiose , Microbioma Gastrointestinal/fisiologia , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Neurônios Aferentes , Nociceptividade/fisiologia , Dor Visceral , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Dor Crônica/etiologia , Dor Crônica/imunologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Cistite Intersticial/etiologia , Cistite Intersticial/imunologia , Cistite Intersticial/metabolismo , Cistite Intersticial/fisiopatologia , Disbiose/complicações , Disbiose/imunologia , Disbiose/metabolismo , Disbiose/fisiopatologia , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/fisiopatologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Neurônios Aferentes/imunologia , Neurônios Aferentes/metabolismo , Neurônios Aferentes/microbiologia , Dor Visceral/etiologia , Dor Visceral/imunologia , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia
5.
Front Pharmacol ; 10: 133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863309

RESUMO

Bladder pain is frequently associated with bladder inflammation, as in conditions like interstitial cystitis (IC), for which current analgesic therapies have limited efficacy. The antinociceptive effect of alpha-2-delta (α2δ) ligands on inflammation-associated visceral pain like that experienced in cystitis has been poorly investigated. To investigate the effect of pregabalin (PGB), an α2δ ligand, we evaluated its impact on mechanical hyperalgesia in a mouse model of cystitis induced by cyclophosphamide (CYP). We further studied its effect on inflammation and NF-kB pathway activation. Acute cystitis was induced by intraperitoneal injection of 150 mg kg-1 of CYP in C57Bl/6J male mice. PGB was subcutaneously injected (30 mg kg-1) 3 h after CYP injection. The effect of PGB on CYP-induced mechanical referred hyperalgesia (abdominal Von Frey test), inflammation (organ weight, cytokine production, α2δ subunit level, NF-kB pathway activation) were assessed 1 h after its injection. In parallel, its effect on cytokine production, α2δ subunit level and NF-kB pathway activation was assessed in vitro on peritoneal exudate cells (PECs) stimulated with LPS. PGB treatment decreased mechanical referred hyperalgesia. Interestingly, it had an anti-inflammatory effect in the cystitis model by reducing pro-inflammatory cytokine production. PGB also inhibited NF-kB pathway activation in the cystitis model and in macrophages stimulated with LPS, in which it blocked the increase in intracellular calcium. This study shows the efficacy of PGB in hypersensitivity and inflammation associated with cystitis. It is therefore of great interest in assessing the benefit of α2δ ligands in patients suffering from cystitis.

6.
Br J Pharmacol ; 176(7): 950-963, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714145

RESUMO

BACKGROUND AND PURPOSE: Abdominal pain associated with low-grade inflammation is frequently encountered in irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) during remission. Current treatments are not very effective and new therapeutic approaches are needed. The role of CaV 3.2 channels, which are important in other chronic pain contexts, was investigated in a murine model of colonic hypersensitivity (CHS) associated with low-grade inflammation. EXPERIMENTAL APPROACH: Low doses of dextran sulfate sodium (DSS; 0.5%) were chronically administered to C57BL/6j mice in drinking water. Their inflammatory state was assessed by systemic and local measures of IL-6, myeloperoxidase, and lipocalin-2 using elisa. Colonic sensitivity was evaluated by the visceromotor responses to colorectal distension. Functional involvement of CaV 3.2 channels was assessed with different pharmacological (TTA-A2, ABT-639, and ethosuximide) and genetic tools. KEY RESULTS: DSS induced low-grade inflammation associated with CHS in mice. Genetic or pharmacological inhibition of CaV 3.2 channels reduced CHS. Cav3.2 channel deletion in primary nociceptive neurons in dorsal root ganglia (CaV 3.2Nav1.8 KO mice) suppressed CHS. Spinal, but not systemic, administration of ABT-639, a peripherally acting T-type channel blocker, reduced CHS. ABT-639 given intrathecally to CaV 3.2Nav1.8 KO mice had no effect, demonstrating involvement of CaV 3.2 channels located presynaptically in afferent fibre terminals. Finally, ethosuximide, which is a T-type channel blocker used clinically, reduced CHS. CONCLUSIONS AND IMPLICATIONS: These results suggest that ethosuximide represents a promising drug reposition strategy and that inhibition of CaV 3.2 channels is an attractive therapeutic approach for relieving CHS in IBS or IBD.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Colo/fisiopatologia , Inflamação/fisiopatologia , Animais , Benzenoacetamidas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/genética , Colo/efeitos dos fármacos , Colo/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças , Etossuximida/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Doenças Inflamatórias Intestinais/fisiopatologia , Interleucina-6/imunologia , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Piridinas/farmacologia , Sulfonamidas/farmacologia
7.
PLoS One ; 13(11): e0207669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30452467

RESUMO

Although Blastocystis spp. infect probably more than 1 billion people worldwide, their clinical significance is still controversial and their pathophysiology remains poorly understood. In this study, we describe a protocol for an efficient and reproducible model of chronic infection in rats, laying the groundwork for future work to evaluate the pathogenic potential of this parasite. In our experimental conditions, we were unable to infect rats using vacuolar forms of an axenically cultivated ST4 isolate, but we successfully established chronic infections of 4 week-old rats after oral administration of both ST3 and ST4 purified cysts isolated from human stool samples. The infection protocol was also applied to 4 week-old C57BL/9, BALB/C and C3H mice, but any mouse was found to be infected by Blastocystis. Minimal cyst inoculum required for rat infection was higher with ST3 (105) than with ST4 (102). These results were confirmed by co-housing experiments highlighting a higher contagious potential of ST4 in rats compared to ST3. Finally, experiments mimicking fecal microbiota transfer from infected to healthy animals showed that Blastocystis spp. could easily infect a new host, even though its intestinal microbiota is not disturbed. In conclusion, our results provide a well-documented and robust rat model of Blastocystis chronic infection, reproducing "natural" infection. This model will be of great interest to study host parasite interactions and to better evaluate clinical significance of Blastocystis.


Assuntos
Cultura Axênica/métodos , Infecções por Blastocystis/microbiologia , Blastocystis/patogenicidade , Fezes/parasitologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Ratos
8.
Front Psychiatry ; 9: 335, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083113

RESUMO

Treating pain and opioid use disorder represents a clinical challenge. While most studies that have assessed opioid analgesic use in opioid substitution treatment (OST) patients primarily address opioid analgesic misuse (1, 2), only few studies focused on OST patients assessed the prescription of analgesic opioids for chronic pain. We sought to compare the prevalence of analgesic opioid prescription (AOP) in two groups of chronic non-cancer pain (CNCP) patients: OST patients vs. the general population. This was a population-based cross-sectional study based on the French national healthcare claims database SNIIRAM (Système National d'Informations Inter-Régimes de l'Assurance Maladie) covering over 66 million people (98.8% of the French population). Overall, 67,173 participants ≥15 years old undergoing continuous OST in 2015 ("OST patients" group) were included and age- and gender-matched by means of a 1:1 ratio with 67,173 patients without OST ("control" group). In each group, patients with cancer conditions were excluded and those having received opioid and non-opioid analgesics for at least 3 months were identified (CNCP patients). Compared to control patients, CNCP OST patients received less AOP (47.8 vs. 68.0%, p < 0.0001) and more often non-opioid prescription (52.2 vs. 32.0%, p < 0.0001). In multivariate analysis, CNCP OST patients were 2.7 times less likely to be prescribed analgesic opioids (adjusted odds ratio [OR] = 2.7 [2.42-3.01], p < 0.0001) than control patients. AOP correlated in CNCP OST patients with: age ≤ 40 years old, female gender, low-income status, methadone-maintained treatment, mental health disorder, hepatitis C virus (HCV) infection, and alcohol abuse disorder. Opioid analgesics were less often prescribed in CNCP OST patients. AOP prevalence was 2.7-fold lower than in the general population. Chronic pain management in OST patients needs to be reinforced through additional physician training and a multidisciplinary approach.

9.
Gut Microbes ; 9(1): 26-37, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28806140

RESUMO

Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD) are related gastrointestinal disorders characterized by abdominal pain associated with colonic hypersensitivity (CHS). Studies in humans have reported an abnormal colonization of Adherent-Invasive E. coli (AIEC) in the ileum of Crohn's disease (CD) patients associated with overexpression of the bacterial colonizing receptor CEACAM6. The aim of the present study was to investigate whether AIEC reference strain LF82 could induce intestinal impairment during infectious and/or post-infectious periods and subsequently the development of CHS. Transgenic mice overexpressing human CEACAM6 protein (TG) and their wild-type littermates were gavaged by CD-associated AIEC bacteria (reference strain LF82) or PBS for 3 d. Colonic hypersensitivity was assessed by colorectal distension (CRD) test during infectious (D4) and post-infectious periods (D21). Several markers of intestinal inflammation were monitored and the colonic expression of purinergic P2X receptors was quantified. At D4, an increased visceromotor response (VMR) to the CRD test was observed in TG mice infected with CD-associated AIEC LF82 in comparison with non-infected TG mice and persisted in a subgroup of infected animals at D21 after bacteria clearance. Increased VMR was associated with low-grade intestinal inflammation, increased intestinal permeability and expression of P2X 3, 4 and 7. This study shows that certain susceptible hosts infected with CD-associated AIEC bacteria can develop persistent CHS associated with low-grade inflammation and increased P2X receptors expression. Thus, CD-associated AIEC infection in CEACAM6 transgenic mice could be used as a novel post-infectious mouse model mimicking quiescent IBD with IBS-like symptoms such as visceral pain.


Assuntos
Colite/patologia , Doença de Crohn/microbiologia , Infecções por Escherichia coli/fisiopatologia , Escherichia coli/patogenicidade , Inflamação/microbiologia , Receptores Purinérgicos P2X/genética , Regulação para Cima , Animais , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Colite/genética , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Feminino , Proteínas Ligadas por GPI/genética , Íleo/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Permeabilidade
10.
Sci Rep ; 7: 43617, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28321113

RESUMO

Chronic pain is associated with anxiety and depression episodes. The amygdala plays a key role in the relationship between emotional responses and chronic pain. Here, we investigated the role of Acid-Sensing Ion Channels 1a within the basolateral amygdala (BLA), in pain and associated anxiety in a rat model of monoarthritis (MoAr). Administration within the BLA of PcTx1 or mambalgin-1, two specific inhibitors of ASIC1a-containing channels significantly inhibited pain and anxiety-related behaviours in MoAr rats. The effect of PcTx1 was correlated with a reduction of c-Fos expression in the BLA. We examined the expression profile of ASICs and other genes in the amygdala in MoAr and sham animals, and found no variation of the expression of ASIC1a, which was confirmed at the protein level. However, an increase in the BLA of MoAr rats of both PI3Kinase mRNA and the phosphorylated form of Akt, along with Bdnf mRNA, suggest that the BDNF/PI3-kinase/Akt pathway might regulate ASIC1a in BLA neurons as demonstrated in spinal sensitisation phenomenon. We also observed changes in several kinase mRNAs expression (PICK1, Sgk1) that are potentially involved in ASIC1a regulation. These results show a crucial role of ASIC1a channels in the BLA in pain and anxiety-related behaviours during arthritis.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Tonsila do Cerebelo/metabolismo , Ansiedade/etiologia , Artralgia/etiologia , Artrite/complicações , Artrite/genética , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Artrite/tratamento farmacológico , Artrite/patologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Masculino , Neurônios/metabolismo , Peptídeos/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Venenos de Aranha/farmacologia
11.
Eur J Pharmacol ; 672(1-3): 83-7, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21996314

RESUMO

The role of antidepressants in the treatment of visceral pain has not been extensively examined. Milnacipran, a serotonin/noradrenalin reuptake inhibitor, has recently been approved in the USA for fibromyalgia, a chronic pathology characterized by diffused/chronic musculoskeletal pain, and a high prevalence of irritable bowel syndrome. Here, we determined its antinociceptive efficacy in two visceral pain tests in rodents: the acetic acid-induced writhing model in mice and the butyrate/colonic distension assay in rats, a model of irritable bowel syndrome. Acute milnacipran (5-40 mg/kgi.p.) significantly and dose-dependently reduced writhing (72.2 ± 3.2 versus 17.0 ± 4.1 writhes at 40 mg/kg). Following repeated administration (40 m/kgi.p. for 5 days), milnacipran preserved its ability to significantly reduce writhing (76 ± 8.3 versus 21.1 ± 6.7 writhes). Similarly, in the butyrate model, acute milnacipran (17.5 and 35 mg/kg, i.p.) significantly and dose-dependently increased cramps induction thresholds (from 45.7 ± 5.7 to 66.3 ± 4.8 and 75.6 ± 2.9 mm Hg, for 17.5 and 35 mg/kg, respectively) and reduced the number of cramps (from 3.0 ± 0.8 to 1.2 ± 0.8 and 0.3 ± 0.3 following inflation of an intra-rectal balloon. To summarise, milnacipran was efficacious in the writhing test, after acute and semi-chronic administration. This effect was confirmed after acute administration in a more specific model of colonic hypersensitivity induced by butyrate. This suggests that milnacipran has potential clinical application in the treatment of visceral pain, such as in irritable bowel syndrome, highly co-morbid with fibromyalgia.


Assuntos
Dor Abdominal/tratamento farmacológico , Analgésicos/farmacologia , Ciclopropanos/farmacologia , Síndrome do Intestino Irritável/tratamento farmacológico , Dor Visceral/tratamento farmacológico , Dor Abdominal/induzido quimicamente , Ácido Acético/efeitos adversos , Analgésicos/administração & dosagem , Analgésicos/uso terapêutico , Animais , Butiratos/efeitos adversos , Ciclopropanos/administração & dosagem , Ciclopropanos/uso terapêutico , Modelos Animais de Doenças , Esquema de Medicação , Síndrome do Intestino Irritável/induzido quimicamente , Masculino , Camundongos , Milnaciprano , Ratos , Dor Visceral/induzido quimicamente
12.
Eur J Pain ; 15(4): 335-43, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20888277

RESUMO

Irritable bowel syndrome (IBS) is a common functional gastro-intestinal disorder characterized by intractable chronic abdominal pain. In this study, we examined the possible spinal mechanisms underlying colonic hypersensitivity (CHS) using a non-inflammatory rat model of IBS induced by rectal enemas of butyrate, a short-chain fatty acid. We hypothesized that spinal plasticity could be responsible for CHS and that ASIC channels, which are known to support pain-elicited currents in the spinal cord, could contribute to central sensitization in our model of IBS. First, in order to determine if visceral pain relies on changes in spinal activity, we analyzed Fos expression in the spinal cord of rats treated with butyrate following a challenge with repetitive noxious colorectal distension. We found that Fos immunoreactivity was increased in thoracic T10-11-12, lumbar L1-2-6 and sacral S1 spinal segments. In control rats treated with saline, noxious repetitive colorectal distensions evoked Fos expression only in L1-2-6 and S1 spinal segments. Secondly, intrathecal injection of PcTx1, a specific ASIC1A antagonist, in the lumbar spinal cord completely prevented the development of CHS induced by butyrate. ASIC1 and 2 mRNAs, especially ASIC1A, were upregulated in the lumbar spinal cord. ASIC1A could thus contribute to spinal sensitization in our model of IBS, as it is supported by spinal colocalization of ASIC1A and Fos proteins. The whole data pinpoint a potential critical role of thoracic spinal cord in non-inflammatory pain states such as IBS and suggest that ASIC channels are part of the molecular effectors of central sensitization leading to visceral pain.


Assuntos
Síndrome do Intestino Irritável/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Canais de Sódio/fisiologia , Medula Espinal/fisiopatologia , Canais Iônicos Sensíveis a Ácido , Anestesia por Inalação , Anestésicos Inalatórios , Animais , Butiratos , Colo/fisiopatologia , Primers do DNA , Enema , Expressão Gênica/efeitos dos fármacos , Genes fos/genética , Imuno-Histoquímica , Síndrome do Intestino Irritável/induzido quimicamente , Isoflurano , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/genética
13.
Brain Res ; 980(1): 117-20, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12865165

RESUMO

Venlafaxine, a new antidepressant with fewer side effects, could be of interest to reduce neuropathic pain following antineoplasic drug treatment. In the present study, we demonstrated that venlafaxine inhibits hyperalgesia in a new rat model of neuropathy induced by the antineoplasic drug vincristine, and exerts its effect preferentially via supraspinal and spinal mechanisms.


Assuntos
Analgésicos/farmacologia , Antineoplásicos Fitogênicos/efeitos adversos , Cicloexanóis/farmacologia , Hiperalgesia/tratamento farmacológico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Vincristina/efeitos adversos , Animais , Antidepressivos de Segunda Geração/farmacologia , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley , Cloridrato de Venlafaxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA