RESUMO
Cervical cancer is the fourth most common cause of mortality in women worldwide. In this study we investigated the effect of a tumour suppressor microRNA miR-214 in modulating the cell death against chemotherapeutic drugs like Doxorubicin, Cisplatin and Paclitaxel. CRISPR-facilitated knockdown and plasmid-based overexpression of miR-214 was performed in cervical cancer cell lines HeLa, C33A and CaSki. It was observed that knocking out miR-214 resulted in reduced apoptosis and cell migration upon drug treatments; while overexpression of miR-214 resulted in marginal increase in apoptosis and cell migration when treated with drugs. However, miR-214 had very little effect on production of reactive oxygen species. Our results also indicate that Doxorubicin was least effective and Paclitaxel most effective in inducing cell death. A combination of miR-214 overexpression and Paclitaxel treatment was found to be most effective in inducing cell death in cervical cancer cells. Analysis of cell cycle phases followed by apoptotic markers also showed that miR-214 overexpression along with Paclitaxel treatment caused an increase in PARP and decline of PI-3 kinase/Akt levels. Therefore, miR-214 levels determine the fate of the cancer cell during chemotherapeutic treatment.
Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doxorrubicina/farmacologia , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Paclitaxel/farmacologia , Espécies Reativas de OxigênioRESUMO
In this study, we investigate the effect of one such micro RNA, miR-214 which is frequently down-regulated in cervical cancer. In this study, we either CRISPR knocked out or overexpressed miR-214 in cervical cancer cells and analyzed the global mRNA expression by Next Generation Sequencing (NGS) It was observed that a total of 108 genes were upregulated and 178 downregulated between the samples, above and below the baseline respectively. Gene Ontology and KEGG pathway analysis reveal distinct biological processes and pathways. Analysis of gene regulatory networks also gave different network patterns in the two samples. We confirmed the RNA sequencing data for 10 genes; IFIF27, SMAD3, COX11, TP53INP1, ABL2, FGF8, TNFAIP3, NRG1, SP3 and MDM4 by Real-time PCR. This is the first report on the effect of miR-214 on global mRNA profile in cervical cancer cells. This study also reports new biomarkers for cervical cancer prognosis.
Assuntos
Biomarcadores Tumorais/genética , MicroRNAs/genética , Transcriptoma , Neoplasias do Colo do Útero/genética , Biomarcadores Tumorais/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , MicroRNAs/metabolismoRESUMO
Cancer has recently been identified as the leading cause of mortality worldwide. Several conventional treatments and cytotoxic immunotherapies have been developed and made available to the market. Considering the complex behavior of tumors and the involvement of numerous genetic and cellular factors involved in tumorigenesis and metastasis, there is a need to develop a promising immunotherapy that targets tumors at both the cellular and genetic levels. Chimeric antigen receptor (CAR) T cell therapy has emerged as a novel therapeutic T cell engineering practice, in which T cells derived from patient blood are engineered in vitro to express artificial receptors targeted to a specific tumor antigen. These directly identify the tumor antigen without the involvement of the major histocompatibility complex. The use of this therapy in the last few years has been successful, with a reduction in remission rates of up to 80% for hematologic cancer, particularly for acute lymphoblastic leukemia (ALL) and nonHodgkin lymphomas, such as large B cell lymphoma. Recently, antiCD19 CAR therapy, or UCART19, has been shown to be efficacious in treating relapsed/refractory hematologic cancer. Several other cell surface tumor antigens, such as CD20 and CD22, found in the majority of leukemias and lymphomas are considered potential targets by pharmaceutical companies and research organizations, and trials have been ongoing in this direction. Although this therapeutic regimen is currently confined to treating hematologic cancer, the increasing involvement of several auxiliary techniques, such as bispecific CAR, TanCAR, inhibitoryCAR, combined antigens, the clustered regularly interspaced short palindromic repeats geneediting tool and nanoparticle delivery, may substantially improve its overall anticancer effects. CAR therapy has the potential to offer a rapid and safer treatment regime to treat nonsolid and solid tumors. The present review presents an insight into the advantages and the advances of CAR immunotherapy and presents the emerging discrepancy of CAR therapy over usual forms of therapy, such as chemotherapy and radiotherapy.