Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 29(9): 1351-1365.e11, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403684

RESUMO

Bacterial ADP-ribosyltransferases (ADPRTs) have been described as toxins involved in pathogenesis through the modification of host proteins. Here, we report that ADPRTs are not pathogen restricted but widely prevalent in the human gut microbiome and often associated with phage elements. We validated their biochemical activity in a large clinical isolate collection and further examined Bxa, a highly abundant ADPRT in Bacteroides. Bxa is expressed, secreted, and enzymatically active in Bacteroides and can ADP-ribosylate non-muscle myosin II proteins. Addition of Bxa to epithelial cells remodeled the actin cytoskeleton and induced secretion of inosine. Bxa-encoding B. stercoris can use inosine as a carbon source and colonizes the gut to significantly greater numbers than a bxa-deleted strain in germ-free and altered Schaedler flora (ASF) mice. Colonization correlated with increased inosine concentrations in the feces and tissues. Altogether, our results show that ADPRTs are abundant in the microbiome and act as bacterial fitness factors.


Assuntos
ADP Ribose Transferases/metabolismo , Citoesqueleto de Actina/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Bacteroides/metabolismo , Células Epiteliais/metabolismo , Inosina/metabolismo , ADP Ribose Transferases/genética , Animais , Bacteriófagos/genética , Células CACO-2 , Linhagem Celular Tumoral , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo
2.
Dev Cell ; 42(1): 37-51.e8, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28697331

RESUMO

Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin curvature-sensing model of microtubule depolymerization by the budding yeast kinesin-8, Kip3. Kinesin-8/Kip3 uses ATP hydrolysis, like other kinesins, for stepping on the microtubule lattice, but at the plus end Kip3 undergoes a switch: its ATPase activity is suppressed when it binds tightly to the curved conformation of tubulin. This prolongs plus-end binding, stabilizes protofilament curvature, and ultimately promotes microtubule disassembly. The tubulin curvature-sensing model is supported by our identification of Kip3 structural elements necessary and sufficient for plus-end binding and depolymerase activity, as well as by the identification of an α-tubulin residue specifically required for the Kip3-curved tubulin interaction. Together, these findings elucidate a major regulatory mechanism controlling the size of cellular microtubule structures.


Assuntos
Cinesinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biocatálise , Hidrólise , Cinesinas/química , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Polimerização , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Sus scrofa
3.
Nat Cell Biol ; 15(8): 948-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23851487

RESUMO

Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by crosslinking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report an antiparallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule-destabilizing activity. In conjunction with Cin8, a kinesin-5 family member, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a slide-disassemble model where the sliding and destabilizing activity of Kip3 balance during pre-anaphase. This facilitates normal spindle assembly. However, the destabilizing activity of Kip3 dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Western Blotting , Instabilidade Genômica , Cinesinas/genética , Modelos Biológicos , Mutação , Tamanho das Organelas , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA