Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Stem Cells ; 42(3): 200-215, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38167958

RESUMO

Leukemogenesis is a complex process that involves multiple stages of mutation in either hematopoietic stem or progenitor cells, leading to cancer development over time. Acute myeloid leukemia (AML) is an aggressive malignancy that affects myeloid cells. The major disease burden is caused by immature blast cells, which are eliminated using conventional chemotherapies. Unfortunately, relapse is a leading cause of death in AML patients, with 30%-80% experiencing it within 2 years of initial treatment. The dominant cause of relapse in leukemia is the presence of therapy-resistant leukemic stem cells (LSCs). These cells express genes related to stemness that are frequently difficult to eradicate and tend to survive standard treatments. Studies have demonstrated that by targeting the metabolic pathways of LSCs, it is possible to improve outcomes and extend the survival of those afflicted by leukemia. The overwhelming evidence suggests that lipid metabolism is reprogrammed in LSCs, leading to an increase in fatty acid uptake and de novo lipogenesis. Genes regulating this process also play a crucial role in therapy evasion. In this concise review, we summarize the lipid metabolism in normal hematopoietic cells, AML blast cells, and AML LSCs. We also compare the lipid metabolic signatures in de novo versus therapy-resistant AML blast and LSCs. We further discuss the metabolic switches, cellular crosstalk, potential targets, and inhibitors of lipid metabolism that could alleviate treatment resistance and relapse.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/patologia , Carcinogênese/patologia , Recidiva , Lipídeos/uso terapêutico
2.
Cancers (Basel) ; 15(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136392

RESUMO

Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.

3.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041250

RESUMO

The present study aimed to explore the possible radioprotective effects of celastrol and relevant molecular mechanisms in an in vitro cell and in vivo mouse models exposed to gamma radiation. Human keratinocytes (HaCaT) and foreskin fibroblast (BJ) cells were exposed to gamma radiation of 20Gy, followed by treatment with celastrol for 24 h. Cell viability, reactive oxygen species (ROS), nitric oxide (NO) and glutathione (GSH) production, lipid peroxidation, DNA damage, inflammatory cytokine levels, and NF-κB pathway activation were examined. The survival rate, levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in blood, and p65 and phospho-p65 expression were also evaluated in mice after exposure to gamma radiation and celastrol treatment. The gamma irradiation of HaCaT cells induced decreased cell viability, but treatment with celastrol significantly blocked this cytotoxicity. Gamma irradiation also increased free radical production (e.g., ROS and NO), decreased the level of GSH, and enhanced oxidative DNA damage and lipid peroxidation in cells, which were effectively reversed by celastrol treatment. Moreover, inflammatory responses induced by gamma irradiation, as demonstrated by increased levels of IL-6, TNF-α, and IL-1ß, were also blocked by celastrol. The increased activity of NF-κB DNA binding following gamma radiation was significantly attenuated after celastrol treatment. In the irradiated mice, treatment with celastrol significantly improved overall survival rate, reduced the excessive inflammatory responses, and decreased NF-κB activity. As a NF-κB pathway blocker and antioxidant, celastrol may represent a promising pharmacological agent with protective effects against gamma irradiation-induced injury.


Assuntos
Prepúcio do Pênis/citologia , Raios gama/efeitos adversos , Queratinócitos/citologia , Protetores contra Radiação/farmacologia , Triterpenos/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/efeitos da radiação , Prepúcio do Pênis/efeitos dos fármacos , Prepúcio do Pênis/imunologia , Prepúcio do Pênis/efeitos da radiação , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/efeitos da radiação , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/efeitos da radiação , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Triterpenos Pentacíclicos , Fator de Necrose Tumoral alfa/metabolismo
4.
J Mol Med (Berl) ; 98(1): 71-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31858156

RESUMO

Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.


Assuntos
ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Inibidores Enzimáticos/uso terapêutico , Terapia de Alvo Molecular/métodos , Neoplasias/enzimologia , Doenças não Transmissíveis , Obesidade/enzimologia , Idoso , Idoso de 80 Anos ou mais , Animais , Doença Crônica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Masculino , Neoplasias/tratamento farmacológico , Doenças não Transmissíveis/tratamento farmacológico , Obesidade/tratamento farmacológico
5.
Stem Cells ; 38(1): 6-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648395

RESUMO

Emerging evidence in cancer metabolomics has identified reprogrammed metabolic pathways to be a major hallmark of cancer, among which deregulated lipid metabolism is a prominent field receiving increasing attention. Cancer stem cells (CSCs) comprise <0.1% of the tumor bulk and possess high self-renewal, tumor-initiating properties, and are responsible for therapeutic resistance, disease recurrence, and tumor metastasis. Hence, it is imperative to understand the metabolic rewiring occurring in CSCs, especially their lipid metabolism, on which there have been recent reports. CSCs rely highly upon lipid metabolism for maintaining their stemness properties and fulfilling their biomass and energy demands, ultimately leading to cancer growth and invasion. Hence, in this review we will shed light on the aberrant lipid metabolism that CSCs exploit to boost their survival, which comprises upregulation in de novo lipogenesis, lipid droplet synthesis, lipid desaturation, and ß-oxidation. Furthermore, the metabolic regulators involved in the process, such as key lipogenic enzymes, are also highlighted. Finally, we also summarize the therapeutic strategies targeting the key regulators involved in CSCs' lipid metabolism, which thereby demonstrates the potential to develop powerful and novel therapeutics against the CSC lipid metabolome.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Células-Tronco Neoplásicas/metabolismo , Humanos
6.
Asian Pac J Cancer Prev ; 20(11): 3437-3446, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759370

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most predominant cancers in India. With advances in the field of oncology, a number of therapies have emerged; however, they are minimally effective. Consequently, there is a need to develop safe and effective regimens for the treatment of OSCC. Butein, a tetrahydroxychalcone has been found to exhibit potent antioxidant, anti-inflammatory, and also anti-tumor effects against several cancer types. However, its effect on OSCC is not studied yet. METHODS: The effect of butein on the viability, apoptosis, migration and invasion of OSCC cells was evaluated using MTT, colony formation, PI/FACS, live and dead, scratch wound healing, and matrigel invasion assays. Further Western blot analysis was done to evaluate the expression of different proteins involved in the regulation of cancer hallmarks. RESULTS: This is the first report exemplifying the anti-cancer effect of butein against OSCC. Our results showed that butein exhibited potent anti-proliferative, cytotoxic, anti-migratory, and anti-invasive effects in OSCC cells. It suppressed the expression of NF-κB and NF-κB-regulated gene products such as COX-2, survivin and MMP-9 which are involved in the regulation of different processes like proliferation, survival, invasion, and metastasis of OSCC cells. Conclusion Collectively, these results suggest that butein has immense potential in the management of OSCC. Nonetheless, in vivo validation is critical before moving to clinical trials.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Chalconas/farmacologia , Neoplasias Bucais/tratamento farmacológico , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Índia , Neoplasias Bucais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
World J Stem Cells ; 11(9): 693-704, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31616544

RESUMO

Tumours are known to be a heterogeneous group of cells, which is why they are difficult to eradicate. One possible cause for this is the existence of slow-cycling cancer stem cells (CSCs) endowed with stem cell-like properties of self-renewal, which are responsible for resistance to chemotherapy and radiotherapy. In recent years, the role of lipid metabolism has garnered increasing attention in cancer. Specifically, the key roles of enzymes such as stearoyl-CoA desaturase-1 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase in CSCs, have gained particular interest. However, despite accumulating evidence on the role of proteins in controlling lipid metabolism, very little is known about the specific role played by lipid products in CSCs. This review highlights recent findings on the role of lipid metabolism in CSCs, focusing on the specific mechanism by which bioactive lipids regulate the fate of CSCs and their involvement in signal transduction pathways.

8.
Pharmacol Res ; 147: 104327, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31283981

RESUMO

Oxymatrine (OMT) is a quinolizidine alkaloid derived from the roots of the Sophora genus plants. It has been widely used as a treatment for chronic hepatitis infections and inflammatory diseases due to its effective immunomodulatory and anti-inflammatory properties. Recently, the potential anti-cancer effects of OMT have been actively studied in various cancers. It can induce apoptosis and inhibit the proliferation of tumor cells, including those of colorectal cancer, gall bladder carcinoma, and leukemia. Moreover, it reduces tumor growth in different in vivo models as well as augments the anti-cancer effects of existing chemotherapeutics on tumor cells. OMT regulates various oncogenic signaling pathways such as the Akt, epidermal growth factor receptor (EGFR), and nuclear factor kappa B (NF-κB) cascades to exert its cytotoxicity against cancer cells. This review provides an overview of the current knowledge on the potential of OMT as an anti-cancer therapeutic through the modulation of diverse oncogenic molecular targets.


Assuntos
Alcaloides/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Quinolizinas/uso terapêutico , Alcaloides/química , Alcaloides/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Modelos Animais de Doenças , Humanos , Quinolizinas/química , Quinolizinas/farmacologia
9.
Biomolecules ; 9(7)2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252679

RESUMO

Protein kinase B (Akt) plays a very significant role in various cancers including oral cancer. However, it has three isoforms (Akt1, Akt2, and Akt3) and they perform distinct functions and even play contrasting roles in different cancers. Therefore, it becomes essential to evaluate the isoform-specific role of Akt in oral cancer. In the present study, an attempt has been made to elucidate the isoform-specific role of Akt in oral cancer. The immunohistochemical analysis of oral cancer tissues showed an overexpression of Akt1 and 2 isoforms but not Akt3. Moreover, the dataset of "The Cancer Genome Atlas" for head and neck cancer has suggested the genetic alterations of Akt1 and 2 tend to be associated with the utmost poor clinical outcome in oral cancer. Further, treatment of oral cancer cells with tobacco and its components such as benzo(a)pyrene and nicotine caused increased mRNA levels of Akt1 and 2 isoforms and also enhanced the aggressiveness of oral cancer cells in terms of proliferation, and clonogenic and migration potential. Finally, silencing of Akt1 and 2 isoforms caused decreased cell survival and induced cell cycle arrest at the G2/M phase. Akt1/2 silencing also reduced tobacco-induced aggressiveness by decreasing the clonogenic and migration potential of oral cancer cells. Moreover, silencing of Akt1 and 2 isoforms was found to decrease the expression of proteins regulating cancer cell survival and proliferation such as cyclooxygenase-2, B-cell lymphoma 2 (Bcl-2), cyclin D1, and survivin. Thus, the important role of Akt1 and 2 isoforms have been elucidated in oral cancer with in-depth mechanistic analysis.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Escamosas/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias Bucais/patologia , Nicotina/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Nicotiana/efeitos adversos , Produtos do Tabaco/efeitos adversos , Células Tumorais Cultivadas
10.
Cancers (Basel) ; 11(5)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052435

RESUMO

Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin's antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer's disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers. These anticancer properties are observed in multiple cancer cell models, including breast, colorectal, and prostate cancer. Formononetin also attenuates metastasis and tumor growth in various in vivo studies. The beneficial effects exuded by formononetin can be attributed to its antiproliferative and cell cycle arrest inducing properties. Formononetin regulates various transcription factors and growth-factor-mediated oncogenic pathways, consequently alleviating the possible causes of chronic inflammation that are linked to cancer survival of neoplastic cells and their resistance against chemotherapy. As such, this review summarizes and critically analyzes current evidence on the potential of formononetin for therapy of various malignancies with special emphasis on molecular targets.

11.
Pharmacol Res ; 144: 192-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31002949

RESUMO

In spite of billions of dollars expended on cancer research every year, the incidence rate and the mortality rate due to this widespread disease has increased drastically over the last few decades. Recent reports from the World Health Organization advocate that overall global cancer burden and deaths due to cancer are expected to double by the next decade. Synthetic drugs developed as chemotherapeutics have repeatedly shown adverse side effects and development of chemoresistance. Cancer is basically a multifactorial disease that necessitates the modulation of multiple targets and oncogenic signaling pathways. Honokiol (C18H18O2) is a biphenolic natural compound isolated from the leaves and barks of Magnolia plant species and has been extensively studied for its beneficial effects against several chronic diseases. Honokiol is capable of efficiently preventing the growth of wide variety of tumors such as those of brain, breast, cervical, colon, liver, lung, prostate, skin, and hematological malignancies. Recent work has shown that this phytochemical can modulate various molecular targets such as activation of pro-apoptotic factors, suppression of anti-apoptotic proteins and different transcription factors, downregulation of various enzymes, chemokines, cell surface adhesion molecules, and cell cycle proteins, and inhibition of activity of protein tyrosine kinases and serine/threonine kinases. Because of its pharmacological safety, honokiol can either be used alone or in combination with other chemotherapeutic drugs for the prevention and treatment of cancer. The current review describes in detail the various reports supporting these anti-cancer studies documented with this promising agent.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Lignanas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Humanos , Lignanas/química , Lignanas/farmacologia , Magnolia/química , Terapia de Alvo Molecular , Neoplasias/prevenção & controle
12.
Molecules ; 24(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884859

RESUMO

Histone deacetylases (HDACs) are enzymes that can control transcription by modifying chromatin conformation, molecular interactions between the DNA and the proteins as well as the histone tail, through the catalysis of the acetyl functional sites removal of proteins from the lysine residues. Also, HDACs have been implicated in the post transcriptional process through the regulation of the proteins acetylation, and it has been found that HDAC inhibitors (HDACi) constitute a promising class of pharmacological drugs to treat various chronic diseases, including cancer. Indeed, it has been demonstrated that in several cancers, elevated HDAC enzyme activities may be associated with aberrant proliferation, survival and metastasis. Hence, the discovery and development of novel HDACi from natural products, which are known to affect the activation of various oncogenic molecules, has attracted significant attention over the last decade. This review will briefly emphasize the potential of natural products in modifying HDAC activity and thereby attenuating initiation, progression and promotion of tumors.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Neoplasias/tratamento farmacológico , Acetilação , Produtos Biológicos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Metástase Neoplásica
13.
Int J Biochem Cell Biol ; 109: 23-32, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710752

RESUMO

The expression and levels of secreted frizzled-related proteins (sFRPs), important Wnt signalling antagonists, have been reported to be reduced in various cancers, and are associated with disease progression and poor prognosis. During tumour development, all sFRP (1, 2, 3, 4, and 5) genes are hypermethylated, causing transcriptional silencing. sFRPs have an ability to sensitize tumour cells to chemotherapeutic drugs, enhancing cell death. Reduced Wnt signalling is associated with loss of cancer stem cell (CSC) viability. We investigated the possible involvement of methylation-mediated silencing of the sFRP gene family in CSCs derived from breast, prostate, and ovarian tumour cell lines. Real-time RT-PCR studies indicated that loss or downregulation of sFRP (1-5) expression in tumours is associated with promoter hypermethylation. Additionally, CSCs derived from all tumour cell lines with sFRP (1-5) promotor hypermethylation expressed sFRP (1-5) mRNA after treatment with 5-Azacytidine (5-Aza), especially sFRP4, implying that DNA methylation is the predominant epigenetic mechanism for sFRP (1-5) silencing. Furthermore, post-translational modification (PTM) in total and histone proteins was observed post 5-Aza and sFRP4 treatment. Protein levels of Wnt downstream signalling components (GSK3ß, active ß-catenin, and phospho ß-catenin) and epigenetic factors of histones (acetyl histone H3, and H3K27me3) affecting PTM were analysed. Our findings suggest that downregulation of sFRP4 expression in endocrine-related cancers can be attributed to aberrant promoter hypermethylation in conjugation with histone modification, and indicate the important role of methylation-induced gene silencing of sFRP4 in survival and proliferation of CSCs derived from these cancers.


Assuntos
Metilação de DNA , Epigênese Genética , Código das Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/patologia , Neoplasias da Próstata/patologia
14.
Int J Biochem Cell Biol ; 110: 59-69, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735730

RESUMO

Breast cancer is a leading cause of mortality in women across the globe. The major reason for its recurrence and high mortality is due to the presence of a drug refractory and self-renewing population of cells, the cancer stem cells (CSCs). Mesenchymal stem cells (MSCs) have recently emerged as a promising cell-based therapeutic agent for the treatment of different cancer types. However, the anti-tumor effect of MSCs has been indicated to be substantially reduced by their in vivo tumor-trophic migration property and direct cell-to-cell integration with tumor stromal elements. To address this drawback, the present study uses a biomaterial, sodium alginate, for the encapsulation of MSCs from the perinatal tissue, Wharton's jelly (WJMSCs) into microbeads, to study the effect of WJMSCs beads on breast CSCs derived from two breast cancer cell lines, MDA-MB-231 and MCF7. Encapsulation with sodium alginate facilitated the prevention of direct cell-to-cell interaction and these microbeads provided a three-dimensional (3D) microenvironment for the encapsulated WJMSCs (eWJMSCs). Compared to two dimensional (2D) culture, eWJMSC increased proliferation of WJMSCs with an increase in pluripotency genes, epithelial to mesenchymal transition (EMT), immune-modulation, and angiogenesis. Interestingly, the tumor invasion suppressor protein E-cadherin was highly expressed in eWJMSCs as shown by Western blot analysis. In addition, eWJMSCs had an increased secretion of anti-inflammatory cytokines VEGF, TGF-ß, TNF-α, IFN-γ, IL-10 and -6, and IL-3ß when compared to 2D culture. Treatment of CSCs with eWJMSCs reduced cell viability, inhibited migration, and exerted an anti-angiogenic effect. eWJMSCs treatment of CSCs increased caspase 3/7 activity, nitric oxide production, and reactive oxygen species production, suggesting its anti-tumorigenic activity. Gene expression analysis revealed that CSCs treated with eWJMSCs had a downregulation of pro-proliferation markers, drug transporters, epithelial-mesenchymal transition-associated markers, and angiogenesis related genes. The mode of anti-proliferative action of WJMSCs beads was possibly through inhibition of the Wnt/ß-catenin signaling pathway as indicated by the upregulation of the Wnt antagonists sFRP4 and DKK1. These data suggest that alginate-encapsulated WJMSCs could be an efficient cell contact-free system for developing stem cell-based therapies for CSCs.


Assuntos
Neoplasias da Mama/patologia , Encapsulamento de Células , Células-Tronco Mesenquimais/citologia , Células-Tronco Neoplásicas/patologia , Alginatos/química , Apoptose , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Citocinas/metabolismo , Regulação para Baixo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Imunomodulação , Células MCF-7 , Óxido Nítrico/biossíntese , Fator 3 de Transcrição de Octâmero/metabolismo , Geleia de Wharton/citologia , Via de Sinalização Wnt
15.
Molecules ; 24(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781671

RESUMO

Cancer is still a major risk factor to public health globally, causing approximately 9.8 million deaths worldwide in 2018. Despite advances in conventional treatment modalities for cancer treatment, there are still few effective therapies available due to the lack of selectivity, adverse side effects, non-specific toxicities, and tumour recurrence. Therefore, there is an immediate need for essential alternative therapeutics, which can prove to be beneficial and safe against cancer. Various phytochemicals from natural sources have been found to exhibit beneficial medicinal properties against various human diseases. Zerumbone is one such compound isolated from Zingiber zerumbet Smith that possesses diverse pharmacological properties including those of antioxidant, antibacterial, antipyretic, anti-inflammatory, immunomodulatory, as well as anti-neoplastic. Zerumbone has shown its anti-cancer effects by causing significant suppression of proliferation, survival, angiogenesis, invasion, and metastasis through the molecular modulation of different pathways such as NF-κB, Akt, and IL-6/JAK2/STAT3 (interleukin-6/janus kinase-2/signal transducer and activator of transcription 3) and their downstream target proteins. The current review briefly summarizes the modes of action and therapeutic potential of zerumbone against various cancers.


Assuntos
Antineoplásicos/administração & dosagem , Sesquiterpenos/administração & dosagem , Zingiberaceae/química , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Estrutura Molecular , Fator de Transcrição STAT3/efeitos dos fármacos , Sesquiterpenos/efeitos adversos , Transdução de Sinais , Fator de Transcrição RelA/efeitos dos fármacos
16.
Int J Biochem Cell Biol ; 108: 17-20, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30630112

RESUMO

Long non-coding RNAs (lncRNAs) are a novel class of gene regulators playing multifaceted roles in physiological processes as well as pathological conditions such as cancer. Cancer stem cells (CSCs) are a small subset of tumor cells that constitute the origin and development of various malignant tumors. CSCs have been identified in a wide spectrum of human tumors and could act as a critical link underlying the processes of tumor metastasis and recurrence. Mounting evidence indicates that lncRNAs are aberrantly expressed in diverse CSCs and regulate CSC properties at different molecular levels. Here, we very briefly summarize the recent findings on the potential roles of lncRNAs in regulating various functions of CSCs, and elaborate on how can lncRNAs impact CSC properties via interacting with other macromolecules at the epigenetic, transcriptional, and post-transcriptional levels. This mini-review also highlights the understanding of the modular regulatory principles of lncRNA interactions in CSCs.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/genética , Epigênese Genética/genética , Humanos , Transcrição Gênica/genética
17.
J Cell Biochem ; 120(3): 4504-4513, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30260018

RESUMO

Oleuropein is one of the most abundant phenolic compounds found in olives. Epidemiological studies have indicated that an increasing intake of olive oil can significantly reduce the risk of breast cancer. However, the potential effect(s) of oleuropein on estrogen receptor (ER)-negative breast cancer is not fully understood. This study aims to understand the anticancer effects and underlying mechanism(s) of oleuropein on ER-negative breast cancer cells in vitro. The effect of oleuropein on the viability of breast cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by flow cytometric analysis, nuclear factor-κB (NF-κB) activation by DNA binding/reporter assays and protein expression by Western blot analysis. In the present report, thiazolyl blue tetrazolium bromide assay results indicated that oleuropein inhibited the viability of breast cancer cells, and its effects were more pronounced on MDA-MB-231 as compared with MCF-7 cells. It was further found that oleuropein increased the level of reactive oxygen species and also significantly inhibited cellular migration and invasion. In addition, the activation of NF-κB was abrogated as demonstrated by Western blot analysis, NF-κB-DNA binding, and luciferase assays. Overall, the data indicates that oleuropein can induce substantial apoptosis via modulating NF-κB activation cascade in breast cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama , Iridoides/farmacologia , NF-kappa B/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Glucosídeos Iridoides , Células MCF-7
18.
Biomolecules ; 10(1)2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906046

RESUMO

Long non-coding RNAs (lncRNAs) play multifaceted roles in modulating gene expression under both physiological and pathological processes. The dysregulation of lncRNAs has been increasingly linked with many human diseases, including a plethora of cancers. Mounting evidence indicates that lncRNAs are aberrantly expressed in hepatocellular carcinoma (HCC) and can regulate HCC progression, as well as metastasis. In this review, we summarize the recent findings on the expanding roles of lncRNAs in modulating various functions of HCC, and elaborate on how can lncRNAs impact HCC metastasis and progression via interacting with chromatin, RNA, and proteins at the epigenetic, transcriptional, and post-transcriptional levels. This mini-review also highlights the current advances regarding the signaling pathways of lncRNAs in HCC metastasis and sheds light on the possible application of lncRNAs for the prevention and treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metástase Neoplásica/genética , RNA Longo não Codificante/genética , Carcinoma Hepatocelular/metabolismo , Epigênese Genética/genética , Humanos , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/metabolismo
19.
Cancers (Basel) ; 11(1)2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591679

RESUMO

BACKGROUND: Chemotherapeutic resistance of glioblastoma has been attributed to a self-renewing subpopulation, the glioma stem cells (GSCs), which is known to be maintained by the Wnt ß-catenin pathway. Our previous findings demonstrated that exogeneous addition of the Wnt antagonist, secreted fizzled-related protein 4 (sFRP4) hampered stem cell properties in GSCs. METHODS: To understand the molecular mechanism of sFRP4, we overexpressed sFRP4 (sFRP4 OE) in three human glioblastoma cell lines U87MG, U138MG, and U373MG. We also performed chromatin immunoprecipitation (ChIP) sequencing of sFRP4 OE and RNA sequencing of sFRP4 OE and sFRP4 knocked down U87 cells. RESULTS: We observed nuclear localization of sFRP4, suggesting an unknown nuclear role. ChIP-sequencing of sFRP4 pulldown DNA revealed a homeobox Cphx1, related to the senescence regulator ETS proto-oncogene 2 (ETS2). Furthermore, miRNA885, a p53-mediated apoptosis inducer, was upregulated in sFRP4 OE cells. RNA sequencing analysis suggested that sFRP4-mediated apoptosis is via the Fas-p53 pathway by activating the Wnt calcium and reactive oxygen species pathways. Interestingly, sFRP4 OE cells had decreased stemness, but when knocked down in multipotent mesenchymal stem cells, pluripotentiality was induced and the Wnt ß-catenin pathway was upregulated. CONCLUSIONS: This study unveils a novel nuclear role for sFRP4 to promote apoptosis by a possible activation of DNA damage machinery in glioblastoma.

20.
Front Pharmacol ; 9: 1294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564115

RESUMO

Overexpression of chemokine receptor type 4 (CXCR4) has been found to be associated with increased cell proliferation, metastasis and also act as an indicator of poor prognosis in patients with breast cancer. Therefore, new agents that can abrogate CXCR4 expression have potential against breast cancer metastasis. In this study, we examined the potential effect of thymoquinone (TQ), derived from the seeds of Nigella sativa, on the expression and regulation of CXCR4 in breast cancer cells. TQ was found to inhibit the expression of CXCR4 in MDA-MB-231 triple negative breast cancer (TNBC) cells in a dose- and time-dependent manner. It was noted that suppression of CXCR4 by TQ was possibly transcriptionally regulated, as treatment with this drug caused down-regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and suppression of NF-κB binding to the CXCR4 promoter. Pretreatment with a proteasome inhibitor and/or lysosomal stabilization did not affect TQ induced suppression of CXCR4. Down-regulation of CXCR4 was further correlated with the inhibition of CXCL12-mediated migration and invasion of MDA-MB-231 cells. Interestingly, it was observed that the deletion of p65 could reverse the observed anti-invasive/anti-migratory effects of TQ in breast cancer cells. TQ also dose-dependently inhibited MDA-MB-231 tumor growth and tumor vascularity in a chick chorioallantoic membrane assay model. We also observed TQ (2 and 4 mg/kg) treatment significantly suppressed multiple lung, brain, and bone metastases in a dose-dependent manner in a metastasis breast cancer mouse model. Interestingly, H&E and immunohistochemical analysis of bone isolated from TQ treated mice indicated a reduction in number of osteolytic lesions and the expression of metastatic biomarkers. In conclusion, the results indicate that TQ primarily exerts its anti-metastatic effects by down-regulation of NF-κB regulated CXCR4 expression and thus has potential for the treatment of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA