Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurooncol Pract ; 11(4): 383-394, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39006524

RESUMO

Glioblastoma (GBM) is the most common primary brain cancer, comprising half of all malignant brain tumors. Patients with GBM have a poor prognosis, with a median survival of 14-15 months. Current therapies for GBM, including chemotherapy, radiotherapy, and surgical resection, remain inadequate. Novel therapies are required to extend patient survival. Although immunotherapy has shown promise in other cancers, including melanoma and non-small lung cancer, its efficacy in GBM has been limited to subsets of patients. Identifying biomarkers of immunotherapy response in GBM could help stratify patients, identify new therapeutic targets, and develop more effective treatments. This article reviews existing and emerging biomarkers of clinical response to immunotherapy in GBM. The scope of this review includes immune checkpoint inhibitor and antitumoral vaccination approaches, summarizing the variety of molecular, cellular, and computational methodologies that have been explored in the setting of anti-GBM immunotherapies.

2.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585856

RESUMO

Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of glioblastoma (GBM). This heterogeneity is further exacerbated during GBM recurrence, as treatment-induced reactive changes produce additional intratumoral heterogeneity that is ambiguous to differentiate on clinical imaging. There is an urgent need to develop non-invasive approaches to map the heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We propose to predictively fuse Magnetic Resonance Imaging (MRI) with the underlying intratumoral heterogeneity in recurrent GBM using machine learning (ML) by leveraging image-localized biopsies with their associated locoregional MRI features. To this end, we develop BioNet, a biologically-informed neural network model, to predict regional distributions of three tissue-specific gene modules: proliferating tumor, reactive/inflammatory cells, and infiltrated brain tissue. BioNet offers valuable insights into the integration of multiple implicit and qualitative biological domain knowledge, which are challenging to describe in mathematical formulations. BioNet performs significantly better than a range of existing methods on cross-validation and blind test datasets. Voxel-level prediction maps of the gene modules by BioNet help reveal intratumoral heterogeneity, which can improve surgical targeting of confirmatory biopsies and evaluation of neuro-oncological treatment effectiveness. The non-invasive nature of the approach can potentially facilitate regular monitoring of the gene modules over time, and making timely therapeutic adjustment. These results also highlight the emerging role of ML in precision medicine.

3.
J Neurosurg ; 140(4): 968-978, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773782

RESUMO

OBJECTIVE: Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor, and resection is a key part of the standard of care. In fluorescence-guided surgery (FGS), fluorophores differentiate tumor tissue from surrounding normal brain. The heme synthesis pathway converts 5-aminolevulinic acid (5-ALA), a fluorogenic substrate used for FGS, to fluorescent protoporphyrin IX (PpIX). The resulting fluorescence is believed to be specific to neoplastic glioma cells, but this specificity has not been examined at a single-cell level. The objective of this study was to determine the specificity with which 5-ALA labels the diversity of cell types in GBM. METHODS: The authors performed single-cell optical phenotyping and expression sequencing-version 2 (SCOPE-seq2), a paired single-cell imaging and RNA sequencing method, of individual cells on human GBM surgical specimens with macroscopically visible PpIX fluorescence from patients who received 5-ALA prior to surgery. SCOPE-seq2 allowed the authors to simultaneously image PpIX fluorescence and unambiguously identify neoplastic cells from single-cell RNA sequencing. Experiments were also conducted in cell culture and co-culture models of glioma and in acute slice cultures from a mouse glioma model to investigate cell- and tissue-specific uptake and secretion of 5-ALA and PpIX. RESULTS: SCOPE-seq2 analysis of human GBM surgical specimens revealed that 5-ALA treatment resulted in labeling that was not specific to neoplastic glioma cells. The cell culture further demonstrated that nonneoplastic cells could be labeled by 5-ALA directly or by PpIX secreted from surrounding neoplastic cells. Acute slice cultures from mouse glioma models showed that 5-ALA preferentially labeled GBM tumor tissue over nonneoplastic brain tissue with significant labeling in the tumor margins, and that this contrast was not due to blood-brain barrier disruption. CONCLUSIONS: Together, these findings support the use of 5-ALA as an indicator of GBM tissue but question the main advantage of 5-ALA for specific intracellular labeling of neoplastic glioma cells in FGS. Further studies are needed to systematically compare the performance of 5-ALA to that of potential alternatives for FGS.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Animais , Humanos , Ácido Aminolevulínico/metabolismo , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/cirurgia , Glioma/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Fluorescência , Protoporfirinas , Análise de Célula Única , Fármacos Fotossensibilizantes
4.
Nat Commun ; 14(1): 2586, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142563

RESUMO

Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional 'tissue-states' defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells. These tissue-states correlated with radiographic, histopathologic, and prognostic features and were enriched in distinct metabolic pathways. Fatty acid biosynthesis was enriched in the tissue-state defined by the cohabitation of astrocyte-like/mesenchymal glioma cells, reactive astrocytes, and macrophages, and was associated with recurrent GBM and shorter survival. Treating acute slices of GBM with a fatty acid synthesis inhibitor depleted the transcriptional signature of this pernicious tissue-state. These findings point to therapies that target interdependencies in the GBM microenvironment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Glioma/genética , Astrócitos/metabolismo , Microambiente Tumoral/genética
5.
Neurooncol Adv ; 5(1): vdad044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215957

RESUMO

The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.

6.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865302

RESUMO

Glioma cells hijack developmental transcriptional programs to control cell state. During neural development, lineage trajectories rely on specialized metabolic pathways. However, the link between tumor cell state and metabolic programs is poorly understood in glioma. Here we uncover a glioma cell state-specific metabolic liability that can be leveraged therapeutically. To model cell state diversity, we generated genetically engineered murine gliomas, induced by deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling cellular fate. N1IC tumors harbored quiescent astrocyte-like transformed cell states while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. N1IC cells exhibit distinct metabolic alterations, with mitochondrial uncoupling and increased ROS production rendering them more sensitive to inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Importantly, treating patient-derived organotypic slices with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles.

7.
Lancet Oncol ; 23(11): 1409-1418, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36243020

RESUMO

BACKGROUND: Topotecan is cytotoxic to glioma cells but is clinically ineffective because of drug delivery limitations. Systemic delivery is limited by toxicity and insufficient brain penetrance, and, to date, convection-enhanced delivery (CED) has been restricted to a single treatment of restricted duration. To address this problem, we engineered a subcutaneously implanted catheter-pump system capable of repeated, chronic (prolonged, pulsatile) CED of topotecan into the brain and tested its safety and biological effects in patients with recurrent glioblastoma. METHODS: We did a single-centre, open-label, single-arm, phase 1b clinical trial at Columbia University Irving Medical Center (New York, NY, USA). Eligible patients were at least 18 years of age with solitary, histologically confirmed recurrent glioblastoma showing radiographic progression after surgery, radiotherapy, and chemotherapy, and a Karnofsky Performance Status of at least 70. Five patients had catheters stereotactically implanted into the glioma-infiltrated peritumoural brain and connected to subcutaneously implanted pumps that infused 146 µM topotecan 200 µL/h for 48 h, followed by a 5-7-day washout period before the next infusion, with four total infusions. After the fourth infusion, the pump was removed and the tumour was resected. The primary endpoint of the study was safety of the treatment regimen as defined by presence of serious adverse events. Analyses were done in all treated patients. The trial is closed, and is registered with ClinicalTrials.gov, NCT03154996. FINDINGS: Between Jan 22, 2018, and July 8, 2019, chronic CED of topotecan was successfully completed safely in all five patients, and was well tolerated without substantial complications. The only grade 3 adverse event related to treatment was intraoperative supplemental motor area syndrome (one [20%] of five patients in the treatment group), and there were no grade 4 adverse events. Other serious adverse events were related to surgical resection and not the study treatment. Median follow-up was 12 months (IQR 10-17) from pump explant. Post-treatment tissue analysis showed that topotecan significantly reduced proliferating tumour cells in all five patients. INTERPRETATION: In this small patient cohort, we showed that chronic CED of topotecan is a potentially safe and active therapy for recurrent glioblastoma. Our analysis provided a unique tissue-based assessment of treatment response without the need for large patient numbers. This novel delivery of topotecan overcomes limitations in delivery and treatment response assessment for patients with glioblastoma and could be applicable for other anti-glioma drugs or other CNS diseases. Further studies are warranted to determine the effect of this drug delivery approach on clinical outcomes. FUNDING: US National Institutes of Health, The William Rhodes and Louise Tilzer Rhodes Center for Glioblastoma, the Michael Weiner Glioblastoma Research Into Treatment Fund, the Gary and Yael Fegel Foundation, and The Khatib Foundation.


Assuntos
Glioblastoma , Glioma , Humanos , Topotecan/efeitos adversos , Glioblastoma/tratamento farmacológico , Convecção , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/patologia
8.
Cell Rep ; 39(12): 110991, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732128

RESUMO

Inhibitors of the mitotic kinesin Kif11 are anti-mitotics that, unlike vinca alkaloids or taxanes, do not disrupt microtubules and are not neurotoxic. However, development of resistance has limited their clinical utility. While resistance to Kif11 inhibitors in other cell types is due to mechanisms that prevent these drugs from disrupting mitosis, we find that in glioblastoma (GBM), resistance to the Kif11 inhibitor ispinesib works instead through suppression of apoptosis driven by activation of STAT3. This form of resistance requires dual phosphorylation of STAT3 residues Y705 and S727, mediated by SRC and epidermal growth factor receptor (EGFR), respectively. Simultaneously inhibiting SRC and EGFR reverses this resistance, and combined targeting of these two kinases in vivo with clinically available inhibitors is synergistic and significantly prolongs survival in ispinesib-treated GBM-bearing mice. We thus identify a translationally actionable approach to overcoming Kif11 inhibitor resistance that may work to block STAT3-driven resistance against other anti-cancer therapies as well.


Assuntos
Antimitóticos , Glioblastoma , Animais , Antimitóticos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Cinesinas , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
9.
Acta Neuropathol Commun ; 10(1): 64, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484611

RESUMO

We present the case of a 41-year-old man who developed worsening mid-thoracic back pain and imaging revealed a well-circumscribed intramedullary tumor in the thoracic spinal cord. Subtotal resection was performed, and histopathological analysis showed a cytologically bland, minimally proliferative glial neoplasm. Sequencing revealed H3 K27M and an activating PTPN11 mutation. Serial imaging revealed slow tumor regrowth over a three year period which prompted a second resection. The recurrent tumor displayed a similar low grade-appearing histology and harbored the same H3 K27M and PTPN11 mutations as the primary. While the prognostic importance of isolated H3 K27M in spinal gliomas is well-known, the combination of these two mutations in spinal low grade glioma has not been previously reported. Importantly, PTPN11 is a component of the MAPK signaling pathway. Thus, as building evidence shows that low grade-appearing gliomas harboring H3 K27M mutations along with BRAF or FGFR1 mutations have a relatively more favorable course compared to isolated H3 K27M-mutant midline gliomas, the present case provides new evidence for the prognostic importance of activating mutations in other components of the MAPK signaling pathway. This case further highlights the importance of clinico-radio-pathologic correlation when incorporating evolving genetic data into the integrated diagnosis of rare neuroepithelial tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/complicações , Glioma/diagnóstico por imagem , Glioma/genética , Histonas/genética , Humanos , Masculino , Mutação/genética , Recidiva Local de Neoplasia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética
10.
Cancer Invest ; 40(6): 554-566, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34151678

RESUMO

Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Dexametasona/uso terapêutico , Glioma/tratamento farmacológico , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos , Medicina de Precisão , Microambiente Tumoral
11.
Cell Rep ; 37(8): 110054, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818553

RESUMO

We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/metabolismo , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/classificação , Humanos , Isoenzimas/genética , Camundongos , Oncogenes/genética , Proteína Quinase C/genética , Proteína Quinase C/fisiologia , Transdução de Sinais/fisiologia
12.
Neurosurg Focus Video ; 5(1): V3, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36284916

RESUMO

Germ cell tumors account for up to 53% of the malignant lesions found in the pineal region and are typically managed with a combination of radiation therapy and chemotherapy. Malignant somatic transformation of intracranial germ cell tumors is exceedingly rare and has only been reported on two other occasions. Here the authors present the case of a pineal yolk sac tumor that failed optimum first-line treatment and underwent malignant somatic transformation to an enteric mucinous adenocarcinoma requiring surgical intervention. This video demonstrates the technical nuances of the occipital transtentorial approach and the safe microsurgical dissection of lesions within the pineal region. The video can be found here: https://stream.cadmore.media/r10.3171/2021.4.FOCVID2151.

13.
Pharmaceutics ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396668

RESUMO

A key limitation to glioma treatment involves the blood brain barrier (BBB). Convection enhanced delivery (CED) is a technique that uses a catheter placed directly into the brain parenchyma to infuse treatments using a pressure gradient. In this manuscript, we describe the physical principles behind CED along with the common pitfalls and methods for optimizing convection. Finally, we highlight our institutional experience using topotecan CED for the treatment of malignant glioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA