Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 121: 176-184, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29459302

RESUMO

Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na+) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm-2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Cetonas/química , Polietilenoglicóis/química , Salinidade , Sais/isolamento & purificação , Água do Mar/análise , Sulfonas/química , Benzofenonas , Resinas de Troca de Cátion/química , Eletricidade , Eletrodos , Desenho de Equipamento , Membranas Artificiais , Polímeros
2.
ACS Appl Mater Interfaces ; 9(26): 21971-21978, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28613809

RESUMO

Porous separators are key components for lithium-ion batteries (LIBs) and they have drawn considerable attention because of their vital role in governing battery cost and performance (e.g., power density, safety, and longevity). Here, zirconia-coated separators were fabricated via a facile biomineralization process with the aim to improve the performance of commercialized polypropylene separators. The as-prepared organic-inorganic composite separators show excellent thermal stability, even at the melting temperature (160 °C) of polypropylene. This is due to the well-distributed zirconia coatings on the separator surfaces. Furthermore, the interfacial impedance of the composite separators is only 343.8 Ω, which is four times lower than the pristine polypropylene ones. The results demonstrate an attractive method to prepare organic-inorganic composite separators with outstanding properties, which makes them promising candidates for high-performance LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA