Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(6): E807-E818, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656130

RESUMO

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle from rodents and humans of both sexes. We recently found that concurrent mutation of three key sites to prevent their phosphorylation (Ser588, Thr642, and Ser704) on Akt substrate of 160 kDa (AS160; also known as TBC1D4) reduced the magnitude of the enhancement of postexercise ISGU (PEX-ISGU) by muscle from male, but not female rats. However, we did not test the role of individual phosphorylation sites on PEX-ISGU. Accordingly, our current aim was to test whether AS160 Ser704 phosphorylation (pSer704) is required for elevated PEX-ISGU by muscle. AS160-knockout (AS160-KO) rats (female and male) were studied when either in sedentary or 3 h after acute exercise. Adeno-associated virus (AAV) vectors were used to enable muscle expression of wild-type AS160 (AAV-WT-AS160) or AS160 mutated Ser704 to alanine to prevent phosphorylation (AAV-1P-AS160). Paired epitrochlearis muscles from each rat were injected with AAV-WT-AS160 or AAV-1P-AS160. We discovered that regardless of sex 1) AS160 abundance in AS160-KO rats was similar in paired muscles expressing WT-AS160 versus 1P-AS160; 2) muscles from exercised versus sedentary rats had greater ISGU, and PEX-ISGU was slightly greater for muscles expressing 1P-AS160 versus contralateral muscles expressing WT-AS160; and 3) pAS160Thr642 was lower in muscles expressing 1P-AS160 versus paired muscles expressing WT-AS160. These results indicate that pAS160Ser704 was not essential for elevated PEX-ISGU by skeletal muscle from rats of either sex. Furthermore, elimination of the postexercise increase in pAS160Thr642 did not lessen the postexercise effect on ISGU.NEW & NOTEWORTHY The current study evaluated the role of Akt substrate of 160 kDa (AS160) phosphorylation on Ser704 in increased insulin-stimulated glucose uptake by skeletal muscle after exercise. Adeno-associated virus vectors were engineered to express either wild-type-AS160 or AS160 mutated so that it could not be phosphorylated on Ser704 in paired muscles from AS160-knockout rats. The results demonstrated that AS160 phosphorylation on Ser704 was not essential for exercise-induced elevation in insulin-stimulated glucose uptake by rats of either sex.


Assuntos
Proteínas Ativadoras de GTPase , Glucose , Insulina , Músculo Esquelético , Condicionamento Físico Animal , Animais , Feminino , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ratos , Fosforilação , Condicionamento Físico Animal/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Insulina/metabolismo , Glucose/metabolismo , Serina/metabolismo , Ratos Sprague-Dawley
2.
Appl Physiol Nutr Metab ; 49(5): 614-625, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181403

RESUMO

We assessed the effects of two levels of calorie restriction (CR; eating either 15% or 35% less than ad libitum, AL, food intake for 8 weeks) by 24-month-old female and male rats on glucose uptake (GU) and phosphorylation of key signaling proteins (Akt; AMP-activated protein kinase, AMPK; Akt substrate of 160 kDa, AS160) measured in isolated skeletal muscles that underwent four incubation conditions (without either insulin or AICAR, an AMPK activator; with AICAR alone; with insulin alone; or with insulin and AICAR). Regardless of sex: (1) neither CR group versus the AL group had greater GU by insulin-stimulated muscles; (2) phosphorylation of Akt in insulin-stimulated muscles was increased in 35% CR versus AL rats; (3) prior AICAR treatment of muscle resulted in greater GU by insulin-stimulated muscles, regardless of diet; and (4) AICAR caused elevated phosphorylation of acetyl CoA carboxylase, an indicator of AMPK activation, in all diet groups. There was a sexually dimorphic diet effect on AS160 phosphorylation, with 35% CR exceeding AL for insulin-stimulated muscles in male rats, but not in female rats. Our working hypothesis is that the lack of a CR-effect on GU by insulin-stimulated muscles was related to the extended duration of the ex vivo incubation period (290 min compared to 40-50 min that was previously reported to be effective). The observed efficacy of prior treatment of muscles with AICAR to improve glucose uptake in insulin-stimulated muscles supports the strategy of targeting AMPK with the goal of improving insulin sensitivity in older females and males.


Assuntos
Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida , Restrição Calórica , Glucose , Insulina , Músculo Esquelético , Proteínas , Proteínas Proto-Oncogênicas c-akt , Ribonucleotídeos , Transdução de Sinais , Animais , Feminino , Masculino , Ratos , Acetil-CoA Carboxilase/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Hipoglicemiantes/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonucleotídeos/farmacologia , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo
3.
PLoS One ; 19(1): e0295964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289946

RESUMO

Some acute exercise effects are influenced by postexercise (PEX) diet, and these diet-effects are attributed to differential glycogen resynthesis. However, this idea is challenging to test rigorously. Therefore, we devised a novel genetic model to modify muscle glycogen synthase 1 (GS1) expression in rat skeletal muscle with an adeno-associated virus (AAV) short hairpin RNA knockdown vector targeting GS1 (shRNA-GS1). Contralateral muscles were injected with scrambled shRNA (shRNA-Scr). Muscles from exercised (2-hour-swim) and time-matched sedentary (Sed) rats were collected immediately postexercise (IPEX), 5-hours-PEX (5hPEX), or 9-hours-PEX (9hPEX). Rats in 5hPEX and 9hPEX experiments were refed (RF) or not-refed (NRF) chow. Muscles were analyzed for glycogen, abundance of metabolic proteins (pyruvate dehydrogenase kinase 4, PDK4; peroxisome proliferator-activated receptor γ coactivator-1α, PGC1α; hexokinase II, HKII; glucose transporter 4, GLUT4), AMP-activated protein kinase phosphorylation (pAMPK), and glycogen metabolism-related enzymes (glycogen phosphorylase, PYGM; glycogen debranching enzyme, AGL; glycogen branching enzyme, GBE1). shRNA-GS1 versus paired shRNA-Scr muscles had markedly lower GS1 abundance. IPEX versus Sed rats had lower glycogen and greater pAMPK, and neither of these IPEX-values differed for shRNA-GS1 versus paired shRNA-Scr muscles. IPEX versus Sed groups did not differ for abundance of metabolic proteins, regardless of GS1 knockdown. Glycogen in RF-rats was lower for shRNA-GS1 versus paired shRNA-Scr muscles at both 5hPEX and 9hPEX. HKII protein abundance was greater for 5hPEX versus Sed groups, regardless of GS1 knockdown or diet, and despite differing glycogen levels. At 9hPEX, shRNA-GS1 versus paired shRNA-Scr muscles had greater PDK4 and PGC1α abundance within each diet group. However, the magnitude of PDK4 or PGC1α changes was similar in each diet group regardless of GS1 knockdown although glycogen differed between paired muscles only in RF-rats. In summary, we established a novel genetic approach to investigate the relationship between muscle glycogen and other exercise effects. Our results suggest that exercise-effects on abundance of several metabolic proteins did not uniformly correspond to differences in postexercise glycogen.


Assuntos
Glicogênio , Condicionamento Físico Animal , Ratos , Animais , Glicogênio/metabolismo , Glucose/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Modelos Genéticos , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , RNA Interferente Pequeno/metabolismo , Insulina/metabolismo
4.
FASEB J ; 37(7): e23021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37289137

RESUMO

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle in both sexes. We recently found that muscle expression and phosphorylation of key sites of Akt substrate of 160 kDa (AS160; also called TBC1D4) are essential for the full-exercise effect on postexercise-ISGU (PEX-ISGU) in male rats. In striking contrast, AS160's role in increased PEX-ISGU has not been rigorously tested in females. Our rationale was to address this major knowledge gap. Wild-type (WT) and AS160-knockout (KO) rats were either sedentary or acutely exercised. Adeno-associated virus (AAV) vectors were engineered to express either WT-AS160 or AS160 mutated on key serine and threonine residues (Ser588, Thr642, and Ser704) to alanine to prevent their phosphorylation. AAV vectors were delivered to the muscle of AS160-KO rats to determine if WT-AS160 or phosphorylation-inactivated AS160 would influence PEX-ISGU. AS160-KO rats have lower skeletal muscle abundance of the GLUT4 glucose transporter protein. This GLUT4 deficit was rescued using AAV delivery of GLUT4 to determine if eliminating muscle GLUT4 deficiency would normalize PEX-ISGU. The novel results were as follows: (1) AS160 expression was required for greater PEX-ISGU; (2) rescuing muscle AS160 expression in AS160-KO rats restored elevated PEX-ISGU; (3) AS160's essential role for the postexercise increase in ISGU was not attributable to reduced muscle GLUT4 content; and (4) AS160 phosphorylation on Ser588, Thr642, and Ser704 was not essential for greater PEX-ISGU. In conclusion, these novel findings revealed that three phosphosites widely proposed to influence PEX-ISGU are not required for this important outcome in female rats.


Assuntos
Proteínas Ativadoras de GTPase , Hiperinsulinismo , Insulina , Condicionamento Físico Animal , Animais , Feminino , Masculino , Ratos , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Fosforilação , Condicionamento Físico Animal/fisiologia , Serina/metabolismo , Treonina/metabolismo
5.
Appl Physiol Nutr Metab ; 48(3): 283-292, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634338

RESUMO

We evaluated effects of calorie restriction (CR; consuming 65% of ad libitum (AL) intake) for 8 weeks on female wildtype (WT) and Akt substrate of 160 kDa knockout (AS160-KO) rats. Insulin-stimulated glucose uptake (ISGU) was determined in isolated epitrochlearis muscles incubated with 0, 50, 100, or 500 µU/mL insulin. Phosphorylation of key insulin signaling proteins that control ISGU (Akt and AS160) was assessed by immunoblotting (Akt phosphorylation on Threonine-308, pAktThr308 and Serine-473, pAktSer473; AS160 phosphorylation on Serine-588, pAS160Ser588, and Threonine-642, pAS160Thr642). Abundance of proteins that regulate ISGU (GLUT4 glucose transporter protein and hexokinase II) was also determined by immunoblotting. The major results were as follows: (i) WT-CR versus WT-AL rats had greater ISGU with 100 and 500 µU/mL insulin; (ii) CR versus WT-AL rats had greater GLUT4 protein abundance; (iii) WT-CR versus WT-AL rats had greater pAktThr308 with 500 µU/mL insulin; (iv) WT-CR versus WT-AL rats did not differ for pAktSer473, pAS160Ser588, or pAS160Thr642 at any insulin concentration; (v) AS160-KO versus WT rats with each diet had lower ISGU at each insulin concentration, but not lower pAkt on either phosphosite; (vi) AS160-KO versus WT rats had lower muscle GLUT4 abundance regardless of diet; and (vii) AS160-KO-CR versus AS160-KO-AL rats did not differ for ISGU, GLUT4 abundance, pAkt on either phosphosite, or pAS160 on either phosphosite. These novel results demonstrated that AS160 expression, but not greater pAS160 on key phosphosites, was essential for the CR-induced increases in muscle ISGU and GLUT4 abundance of female rats.


Assuntos
Glucose , Insulina , Animais , Feminino , Ratos , Restrição Calórica , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Treonina/farmacologia
6.
J Gerontol A Biol Sci Med Sci ; 78(2): 177-185, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36269629

RESUMO

AMP-activated protein kinase (AMPK), a highly conserved, heterotrimeric serine/threonine kinase with critical sensory and regulatory functions, is proposed to induce antiaging actions of caloric restriction (CR). Although earlier studies assessed CR's effects on AMPK in rodent skeletal muscle, the scope of these studies was narrow with a limited focus on older animals. This study's purpose was to fill important knowledge gaps related to CR's influence on AMPK in skeletal muscle of older animals. Therefore, using epitrochlearis muscles from 24-month-old ad-libitum fed (AL) and CR (consuming 65% of AL intake for 8 weeks), male Fischer-344 × Brown Norway F1 rats, we determined: (a) AMPK Thr172 phosphorylation (a key regulatory site) by immunoblot; (b) AMPKα1 and AMPKα2 activity (representing the 2 catalytic α-subunits of AMPK), and AMPKγ3 activity (representing AMPK complexes that include the skeletal muscle-selective regulatory γ3 subunit) using enzymatic assays; (c) phosphorylation of multiple protein substrates that are linked to CR-related effects (acetyl-CoA carboxylase [ACC], that regulates lipid oxidation; Beclin-1 and ULK1 that are autophagy regulatory proteins; Raptor, mTORC1 complex protein that regulates autophagy; TBC1D1 and TBC1D4 that regulate glucose uptake) by immunoblot; and (d) ATP and AMP concentrations (key AMPK regulators) by mass spectrometry. The results revealed significant CR-associated increases in the phosphorylation of AMPKThr172 and 4 AMPK substrates (ACC, Beclin-1, TBC1D1, and TBC1D4), without significant diet-related differences in ATP or AMP concentration or AMPKα1-, AMPKα2-, or AMPKγ3-associated activity. The enhanced phosphorylation of multiple AMPK substrates provides novel mechanistic insights linking AMPK to functionally important consequences of CR.


Assuntos
Proteínas Quinases Ativadas por AMP , Restrição Calórica , Ratos , Masculino , Animais , Fosforilação , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Beclina-1/metabolismo , Músculo Esquelético/metabolismo , Ratos Endogâmicos F344 , Ratos Endogâmicos BN , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/farmacologia , Trifosfato de Adenosina/metabolismo
7.
Diabetes ; 71(2): 219-232, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753801

RESUMO

One exercise session can elevate insulin-stimulated glucose uptake (ISGU) in skeletal muscle, but the mechanisms remain elusive. Circumstantial evidence suggests a role for Akt substrate of 160 kDa (AS160 or TBC1D4). We used genetic approaches to rigorously test this idea. The initial experiment evaluated the role of AS160 in postexercise increase in ISGU using muscles from male wild-type (WT) and AS160-knockout (KO) rats. The next experiment used AS160-KO rats with an adeno-associated virus (AAV) approach to determine if rescuing muscle AS160 deficiency could restore the ability of exercise to improve ISGU. The third experiment tested if eliminating the muscle GLUT4 deficit in AS160-KO rats via AAV-delivered GLUT4 would enable postexercise enhancement of ISGU. The final experiment used AS160-KO rats and AAV delivery of AS160 mutated to prevent phosphorylation of Ser588, Thr642, and Ser704 to evaluate their role in postexercise ISGU. We discovered the following: 1) AS160 expression was essential for postexercise increase in ISGU; 2) rescuing muscle AS160 expression of AS160-KO rats restored postexercise enhancement of ISGU; 3) restoring GLUT4 expression in AS160-KO muscle did not rescue the postexercise increase in ISGU; and 4) although AS160 phosphorylation on three key sites was not required for postexercise elevation in ISGU, it was essential for the full exercise effect.


Assuntos
Proteínas Ativadoras de GTPase/genética , Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Músculo Esquelético/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação , Ratos , Ratos Transgênicos
8.
J Appl Physiol (1985) ; 132(1): 140-153, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882030

RESUMO

Previous studies demonstrated that acute exercise can enhance glucose uptake (GU), γ3-AMP-activated protein kinase (AMPK) activity, and Akt substrate of 160 kDa (AS160) phosphorylation in skeletal muscles from low-fat diet (LFD)- and high-fat diet (HFD)-fed male rats. Because little is known about exercise effects on these outcomes in females, we assessed postexercise GU by muscles incubated ± insulin, delta-insulin GU (GU of muscles incubated with insulin minus GU uptake of paired muscles incubated without insulin), and muscle signaling proteins from female rats fed a LFD or a brief HFD (2 wk). Rats were sedentary (LFD-SED, HFD-SED) or swim exercised. Immediately postexercise (IPEX) or 3 h postexercise (3hPEX), epitrochlearis muscles were incubated (no insulin IPEX; ±insulin 3hPEX) to determine GU. Muscle γ3-AMPK activity (IPEX, 3hPEX) and phosphorylated AS160 (pAS160; 3hPEX) were also assessed. γ3-AMPK activity and insulin-independent GU of IPEX rats exceeded sedentary rats without diet-related differences in either outcome. At 3hPEX, both GU by insulin-stimulated muscles and delta-insulin GU exceeded their respective diet-matched sedentary controls. GU by insulin-stimulated muscles, but not delta-insulin GU for LFD-3hPEX, exceeded HFD-3hPEX. LFD-3hPEX versus LFD-SED had greater γ3-AMPK activity and greater pAS160. HFD-3hPEX exceeded HFD-SED for pAS160 but not for γ3-AMPK activity. pAS160 and γ3-AMPK at 3hPEX did not differ between diet groups. These results revealed that increased γ3-AMPK activity at 3hPEX was not essential for greater GU in insulin-stimulated muscle or greater delta-insulin GU in HFD female rats. Similarly elevated γ3-AMPK activity in LFD-IPEX versus HFD-IPEX and pAS160 in LFD-3hPEX versus HFD-3hPEX may contribute to the comparable delta-insulin GU at 3hPEX in both diet groups.NEW & NOTEWORTHY Glucose uptake (GU) and phosphorylated AS160 (pAS160) by insulin-stimulated muscles at 3 h postexercise (3hPEX) exceeded diet-matched controls in female low-fat diet-fed (LFD) or high-fat diet-fed (HFD) rats. GU with insulin for LFD-3hPEX exceeded HFD-3hPEX, whereas pAS160 was similar between these groups. γ3-AMPK immediately postexercise (IPEX) was similarly elevated in LFD and HFD, but only LFD-3hPEX had increased γ3-AMPK. These results suggest that greater γ3-AMPK at IPEX and pAS160 at 3hPEX may contribute to elevated GU with insulin, but greater γ3-AMPK at 3hPEX was dispensable for female HFD rats.


Assuntos
Resistência à Insulina , Músculo Esquelético , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Feminino , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
9.
J Appl Physiol (1985) ; 128(2): 410-421, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31944891

RESUMO

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle. Prior research on healthy muscle suggests that enhanced postexercise ISGU depends on elevated γ3-AMPK activity leading to greater phosphorylation of Akt substrate of 160 kDa (pAS160) on an AMPK-phosphomotif (Ser704). Phosphorylation of AS160Ser704, in turn, may favor greater insulin-stimulated pAS160 on an Akt-phosphomotif (Thr642) that regulates ISGU. Accordingly, we tested if exercise-induced increases in γ3-AMPK activity and pAS160 on key regulatory sites accompany improved ISGU at 3 h postexercise (3hPEX) in insulin-resistant muscle. Rats fed a high-fat diet (HFD; 2-wk) that induces insulin resistance either performed acute swim-exercise (2 h) or were sedentary (SED). SED rats fed a low-fat diet (LFD; 2 wk) served as healthy controls. Isolated epitrochlearis muscles from 3hPEX and SED rats were analyzed for ISGU, pAS160, pAkt2 (Akt-isoform that phosphorylates pAS160Thr642), and γ1-AMPK and γ3-AMPK activity. ISGU was lower in HFD-SED muscles versus LFD-SED, but this decrement was eliminated in the HFD-3hPEX group. γ3-AMPK activity, but not γ1-AMPK activity, was elevated in HFD-3hPEX muscles versus both SED controls. Furthermore, insulin-stimulated pAS160Thr642, pAS160Ser704, and pAkt2Ser474 in HFD-3hPEX muscles were elevated above HFD-SED and equal to values in LFD-SED muscles, but insulin-independent pAS160Ser704 was unaltered at 3hPEX. These results demonstrated, for the first time in an insulin-resistant model, that the postexercise increase in ISGU was accompanied by sustained enhancement of γ3-AMPK activation and greater pAkt2Ser474. Our working hypothesis is that these changes along with enhanced insulin-stimulated pAS160 increase ISGU of insulin-resistant muscles to values equaling insulin-sensitive sedentary controls.NEW & NOTEWORTHY Earlier research focusing on signaling events linked to increased insulin sensitivity in muscle has rarely evaluated insulin resistant muscle after exercise. We assessed insulin resistant muscle after an exercise protocol that improved insulin-stimulated glucose uptake. Prior exercise also amplified several signaling steps expected to favor enhanced insulin-stimulated glucose uptake: increased γ3-AMP-activated protein kinase activity, greater insulin-stimulated Akt2 phosphorylation on Ser474, and elevated insulin-stimulated Akt substrate of 160 kDa phosphorylation on Ser588, Thr642, and Ser704.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Fosforilação , Ratos
10.
PLoS One ; 14(4): e0216236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31034517

RESUMO

Akt substrate of 160 kDa (also called AS160 or TBC1D4) is a Rab GTPase activating protein and key regulator of insulin-stimulated glucose uptake which is expressed by multiple tissues, including skeletal muscle, white adipose tissue (WAT) and the heart. This study introduces a novel rat AS160-knockout (AS160-KO) model that was created using CRISPR/Cas9 technology. We compared male AS160-KO versus wildtype (WT) rats for numerous metabolism-related endpoints. Body mass, body composition, energy expenditure and physical activity did not differ between genotypes. Oral glucose intolerance was detected in AS160-KO versus WT rats (P<0.005). A hyperinsulinemic-euglycemic clamp (HEC) revealed insulin resistance for glucose infusion rate (P<0.05) with unaltered hepatic glucose production in AS160-KO versus WT rats. Genotype-effects on glucose uptake during the HEC: 1) was significantly lower in epitrochlearis (P<0.01) and extensor digitorum longus (P<0.05) of AS160-KO versus WT rats, and tended to be lower for AS160-KO versus WT rats in the soleus (P<0.06) and gastrocnemius (P<0.08); 2) tended to be greater for AS160-KO versus WT rats in white adipose tissue (P = 0.09); and 3) was significantly greater in the heart (P<0.005) of AS160-KO versus WT rats. GLUT4 protein abundance was significantly lower for AS160-KO versus WT rats in each tissue analyzed (P<0.01-0.001) except the gastrocnemius. Ex vivo insulin-stimulated glucose uptake was significantly lower (P<0.001) for AS160-KO versus WT rats in isolated epitrochlearis or soleus. Insulin-stimulated Akt phosphorylation (in vivo or ex vivo) did not differ between genotypes for any tissue tested. Ex vivo AICAR-stimulated glucose uptake by isolated epitrochlearis was significantly lower for AS160-KO versus WT rats (P<0.01) without genotype-induced alteration in AMP-activated protein phosphorylation. This unique AS160-KO rat model, which elucidated striking genotype-related modifications in glucoregulation, will enable future research aimed at understanding AS160's roles in numerous physiological processes in response to various interventions (e.g., diet and/or exercise).


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Técnicas de Inativação de Genes , Glucose/metabolismo , Especificidade de Órgãos , Adenilato Quinase/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Composição Corporal , Peso Corporal , Desoxiglucose/metabolismo , Comportamento Alimentar , Genótipo , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hiperinsulinismo/metabolismo , Insulina/farmacologia , Masculino , Modelos Animais , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Condicionamento Físico Animal , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Transgênicos , Ribonucleotídeos/farmacologia
11.
Appl Physiol Nutr Metab ; 43(8): 795-805, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29518344

RESUMO

5' AMP-activated protein kinase (AMPK) activation may be part of the exercise-induced process that enhances insulin sensitivity. Independent of exercise, acute prior treatment of skeletal muscles isolated from young rats with a pharmacological AMPK activator, 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR), causes subsequently improved insulin-stimulated glucose uptake (GU). However, efficacy of a single prior AICAR exposure on insulin-stimulated GU in muscles from old animals has not been studied. The purpose of this study was to determine whether brief, prior exposure to AICAR (3.5 h before GU assessment) leads to subsequently increased GU in insulin-stimulated skeletal muscles from old rats. Epitrochlearis muscles from 24-month-old male rats were isolated and initially incubated ±AICAR (60 min), followed by incubation without AICAR (3 h), then incubation ±insulin (50 min). Muscles were assessed for GU (via 3-O-methyl-[3H]-glucose accumulation) and site-specific phosphorylation of key proteins involved in enhanced GU, including AMPK, Akt, and Akt substrate of 160 kDa (AS160), via Western blotting. Prior ex vivo AICAR treatment resulted in greater GU by insulin-stimulated muscles from 24-month-old rats. Prior AICAR treatment also resulted in greater phosphorylation of AMPK (T172) and AS160 (S588, T642, and S704). Glucose transporter type 4 (GLUT4) protein abundance was unaffected by prior AICAR and/or insulin treatment. These findings demonstrate that skeletal muscles from older rats are susceptible to enhanced insulin-stimulated GU after brief activation of AMPK by prior AICAR. Consistent with earlier research using muscles from young rodents, increased phosphorylation of AS160 is implicated in this effect, which was not attributable to altered GLUT4 glucose transporter protein abundance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Ativadores de Enzimas/farmacologia , Glucose/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Fatores Etários , Aminoimidazol Carboxamida/farmacologia , Animais , Ativação Enzimática , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hexoquinase/metabolismo , Técnicas In Vitro , Insulina/farmacologia , Masculino , Músculo Esquelético/enzimologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Transdução de Sinais/efeitos dos fármacos
12.
Appl Physiol Nutr Metab ; 41(11): 1208-1211, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27786542

RESUMO

Calorie restriction (CR; ∼60%-65% of ad libitum consumption) can enhance insulin-stimulated glucose uptake (ISGU) in predominantly slow-twitch skeletal muscles (e.g., soleus) by an incompletely understood mechanism. We used an Akt inhibitor (MK-2206) to eliminate CR's effect on insulin-stimulated Akt2 phosphorylation in isolated rat soleus muscles. We found long-term CR-enhanced ISGU was abolished by eliminating the CR effect on Akt2 phosphorylation, suggesting the CR-induced benefit on ISGU in the predominantly slow-twitch soleus relies on enhanced Akt2 phosphorylation.


Assuntos
Envelhecimento , Restrição Calórica , Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Absorção Fisiológica/efeitos dos fármacos , Animais , Cruzamentos Genéticos , Ativação Enzimática/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Masculino , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos Endogâmicos BN , Ratos Endogâmicos F344
13.
Am J Physiol Regul Integr Comp Physiol ; 310(5): R449-58, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26739650

RESUMO

Skeletal muscle insulin resistance is associated with many common age-related diseases, but moderate calorie restriction (CR) can substantially elevate glucose uptake by insulin-stimulated skeletal muscle from both young and old rats. The current study evaluated the isolated epitrochlearis muscle from ∼24.5-mo-old rats that were either fed ad libitum (AL) or subjected to CR (consuming ∼65% of ad libitum, AL, intake beginning at ∼22.5 mo old). Some muscles were also incubated with MK-2206, a potent and selective Akt inhibitor. The most important results were that in isolated muscles, CR vs. AL resulted in 1) greater insulin-stimulated glucose uptake 2) that was accompanied by significantly increased insulin-mediated activation of Akt2, as indicated by greater phosphorylation on both Thr(309) and Ser(474) along with greater Akt2 activity, 3) concomitant with enhanced phosphorylation of several Akt substrates, including an Akt substrate of 160 kDa on Thr(642) and Ser(588), filamin C on Ser(2213) and proline-rich Akt substrate of 40 kDa on Thr(246), but not TBC1D1 on Thr(596); and 4) each of the CR effects was eliminated by MK-2206. These data provide compelling new evidence linking greater Akt2 activation to the CR-induced elevation of insulin-stimulated glucose uptake by muscle from old animals.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Desoxiglucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores Etários , Animais , Cruzamentos Genéticos , Ativação Enzimática , Filaminas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Resistência à Insulina , Masculino , Músculo Esquelético/enzimologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Fatores de Tempo
14.
PLoS One ; 8(6): e65118, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23755179

RESUMO

Calorie restriction (CR) (consuming ~60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344 x Brown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (~140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [(14)C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160 kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo.


Assuntos
Restrição Calórica , Glucose/farmacologia , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Desoxiglucose/administração & dosagem , Desoxiglucose/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Frutosefosfatos/metabolismo , Glucose/administração & dosagem , Transportador de Glucose Tipo 4/metabolismo , Glucose-6-Fosfato/metabolismo , Hexoquinase/metabolismo , Insulina/sangue , Masculino , Músculo Esquelético/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos BN , Receptor de Insulina/metabolismo
15.
Am J Physiol Regul Integr Comp Physiol ; 303(12): R1261-7, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23115120

RESUMO

Akt is a serine/threonine kinase that plays a key role in numerous cellular functions including metabolism, growth, protein synthesis, apoptosis, and cell proliferation. The most consistent and robust effect of moderate calorie restriction (CR; ~60% of ad libitum, AL, food consumption) on insulin signaling in rodent muscle has been enhanced insulin-induced phosphorylation of Akt (pAkt). However, there is limited knowledge regarding the mechanism for this enhancement and its consequences in predominantly slow-twitch muscle. Accordingly, in soleus muscle of 9-mo-old rats, we analyzed the effect of CR and insulin on important signaling events that are proximal to Akt activation including: pIR(Tyr1162/1163), pIRS1(Tyr), pIRS1(Ser312), IRS1-associated phosphatidylinositol 3-kinase activity, or pPTEN(Ser380). In addition, we analyzed the effect of CR and insulin on Akt substrates that have established or putative roles in glucose metabolism, cellular growth, maintenance of muscle structure, or protein synthesis including pGSK3α(Ser21), pGSK3ß(Ser9), pTSC2(Ser939), pP70S6K(Thr412), pAS160(Thr642), and pFLNc(Ser2213). The current study demonstrated that the CR-induced increase in pAkt in isolated soleus muscles from 9-mo-old rats can occur without concomitant enhancement of several important insulin signaling events that are proximal to Akt activation. These results suggest that the greater pAkt in the soleus muscles from CR rats was attributable to an alternative mechanism. We also observed that the effects of CR were not uniform for phosphorylation of six insulin-regulated Akt substrates in the soleus. The differential response in phosphorylation by Akt substrates likely has important implications for explaining the complex effect of CR diverse cellular functions.


Assuntos
Restrição Calórica , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Glucose/metabolismo , Resistência à Insulina/fisiologia , Masculino , Modelos Animais , Fosforilação , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Transdução de Sinais/fisiologia
16.
Biochim Biophys Acta ; 1822(11): 1735-40, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22846604

RESUMO

Calorie restriction (CR; ~60% of ad libitum, AL, consumption) improves insulin-stimulated glucose uptake in skeletal muscle. The precise cellular mechanism for this healthful outcome is unknown, but it is accompanied by enhanced insulin-stimulated activation of Akt. Previous research using Akt2-null mice demonstrated that Akt2 is essential for the full CR-effect on insulin-stimulated glucose uptake by muscle. However, because Akt2-null mice were completely deficient in Akt2 in every cell throughout life, it would be valuable to assess the efficacy of transient, muscle-specific Akt inhibition for attenuation of CR-effects on glucose uptake. Accordingly, we used a selective Akt inhibitor (MK-2206) to eliminate the CR-induced elevation in insulin-stimulated Akt2 phosphorylation and determined the effects on Akt substrates and glucose uptake. We incubated isolated epitrochlearis muscles from 9-month-old AL and CR (~60-65% of AL intake for 6months) rats with or without MK-2206 and measured insulin-stimulated (1.2nM) glucose uptake and phosphorylation of the insulin receptor (Tyr1162/1163), pan-Akt (Thr308 and Ser473), Akt2 (Thr308 and Ser473), AS160/TBC1D4 (Thr642), and Filamin C (Ser2213). Incubation of isolated skeletal muscles with a dose of a selective Akt inhibitor that eliminated the CR-induced increases in Akt2 phosphorylation prevented CR's effects on insulin-stimulated glucose uptake, pAS160(Thr642) and pFilamin C(Ser2213) without altering pIR(Tyr1162/1163). These data provide compelling new evidence linking the CR-induced increase in insulin-stimulated Akt2 phosphorylation to CR's effects on insulin-mediated phosphorylation of Akt substrates and glucose uptake in skeletal muscle.


Assuntos
Restrição Calórica , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Contráteis/metabolismo , Filaminas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor de Insulina/metabolismo
17.
J Gerontol A Biol Sci Med Sci ; 67(12): 1279-85, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22454372

RESUMO

Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch (type I) muscle from old rats is unknown. The purpose of this study was to assess insulin-stimulated glucose uptake and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from 24-month-old ad libitum fed and CR (consuming 65% of ad libitum, intake) rats. Muscles were incubated with and without 1.2 nM insulin. CR versus ad libitum rats had greater insulin-stimulated glucose uptake and Akt phosphorylation (pAkt) on T308 and S473 for both muscles incubated with insulin. GLUT4 protein abundance and phosphorylation of the insulin receptor (Y1162/1163) and AS160 (T642) were unaltered by CR in both muscles. These results implicate enhanced pAkt as a potential mechanism for the CR-induced increase in insulin-stimulated glucose uptake by the fast-twitch epitrochlearis and slow-twitch soleus of old rats.


Assuntos
Restrição Calórica , Glucose/metabolismo , Resistência à Insulina/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Imuno-Histoquímica , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Fosforilação , Ratos , Ratos Endogâmicos , Receptor de Insulina/metabolismo
18.
Am J Physiol Endocrinol Metab ; 300(6): E966-78, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21386065

RESUMO

Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.


Assuntos
Restrição Calórica , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Proteína Oncogênica v-akt/metabolismo , Adenilato Quinase/metabolismo , Animais , Western Blotting , Peso Corporal/fisiologia , Desoxiglucose/metabolismo , Ingestão de Alimentos/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Imunoprecipitação , Proteínas Substratos do Receptor de Insulina/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas/metabolismo , Ratos
19.
J Appl Physiol (1985) ; 108(6): 1631-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20339009

RESUMO

The slow-twitch soleus, but not fast-twitch muscle, of old vs. adult rats has previously been demonstrated to become insulin resistant for in vivo glucose uptake. We probed cellular mechanisms for the age effect by assessing whether insulin resistance for glucose uptake was an intrinsic characteristic of the muscle ex vivo and by analyzing key insulin signaling steps. We hypothesized that isolated soleus and epitrochlearis (fast-twitch) muscles from old (25 mo) vs. adult (9 mo) male Fisher-344 x Brown Norway rats would have insulin resistance for Akt2 Thr308 phosphorylation (pAkt2Thr308), AS160 phosphorylation Thr642 (pAS160Thr642), and atypical PKC (aPKCzeta/lambda) activity corresponding in magnitude to the extent of insulin resistance for [3H]-2-deoxyglucose (2-DG) uptake. Epitrochlearis insulin-stimulated 2-DG uptake above basal values was unaltered by age, and epitrochlearis pAkt2Thr308, pAS160Thr642, and aPKCzeta/lambda activity were not significantly different in adult vs. old rats. Conversely, insulin-stimulated 2-DG uptake by the soleus of old vs. adult rats was reduced with 1.2 nM (42%) and 30 nM (28%) insulin concomitant with an age-related decline in pAkt2Thr308 of the insulin-stimulated soleus. There were no age effects on pAS160Thr642 or aPKCzeta/lambda activity or abundance of Akt2, AS160, GLUT4 or Appl1 protein in either muscle. The results suggest the possibility that an age-related decline in pAkt2Thr308, acting by a mechanism other than reduced pAS160Thr642, may play a role in the insulin resistance in the soleus of old rats. Skeletal muscle insulin resistance in old age is distinctive compared with other insulin-resistant rodent models that are not selective for greater insulin resistance in the soleus vs. the epitrochlearis.


Assuntos
Envelhecimento/fisiologia , Glucose/farmacocinética , Resistência à Insulina/fisiologia , Músculo Esquelético/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Masculino , Fosforilação , Ratos , Ratos Endogâmicos F344
20.
Am J Physiol Endocrinol Metab ; 293(6): E1782-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17925453

RESUMO

In vivo calorie restriction [CR; consuming 60% of ad libitum (AL) intake] induces elevated insulin-stimulated glucose transport (GT) in skeletal muscle. The mechanisms triggering this adaptation are unknown. The aim of this study was to determine whether physiological reductions in extracellular glucose and/or insulin, similar to those found with in vivo CR, were sufficient to elevate GT in isolated muscles. Epitrochlearis muscles dissected from rats were incubated for 24 h in media with glucose (8 mM) and insulin (80 microU/ml) at levels similar to plasma values of AL-fed rats and compared with muscles incubated with glucose (5.5 mM) and/or insulin (20 microU/ml) at levels similar to plasma values of CR rats. Muscles incubated with CR levels of glucose and insulin for 24 h had a subsequently greater (P < 0.005) GT with 80 microU/ml insulin and 8 mM [(3)H]-3-O-methylglucose but unchanged GT without insulin. Reducing only glucose or insulin for 24 h or both glucose and insulin for 6 h did not induce altered GT. Increased GT after 24-h incubation with CR levels of glucose and insulin was not attributable to increased insulin receptor tyrosine phosphorylation, Akt serine phosphorylation, or Akt substrate of 160 kDa phosphorylation. Nor did 24-h incubation with CR levels of glucose and insulin alter the abundance of insulin receptor, insulin receptor substrate-1, GLUT1, or GLUT4 proteins. These results provide the proof of principle that reductions in extracellular glucose and insulin, similar to in vivo CR, are sufficient to induce an increase in insulin-stimulated glucose transport comparable to the increase found with in vivo CR.


Assuntos
Restrição Calórica , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , 3-O-Metilglucose/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Feminino , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA