Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361537

RESUMO

An immunosuppressive microenvironment in lung concurs to pre-malignant lesions progression to cancer. Here, we explore if perturbing lung microbiota, which contribute to immunosuppression, by antibiotics or probiotic aerosol interferes with lung cancer development in a mouse carcinogen-induced tumor model. Urethane-injected mice were vancomycin/neomycin (V/N)-aerosolized or live or dead L. rhamnosus GG (L.RGG)-aerosolized, and tumor development was evaluated. Transcriptional profiling of lungs and IHC were performed. Tumor nodules number, diameter and area were reduced by live or heat-killed L.RGG, while only a decrease in nodule diameter was observed in V/N-treated lungs. Both L.RGG and V/N reduced Tregs in the lung. In L.RGG-treated groups, the gene encoding the joining chain (J chain) of immunoglobulins was increased, and higher J chain protein and IgA levels were observed. An increased infiltration of B, NK and myeloid-derived cells was predicted by TIMER 2.0. The Kaplan-Meier plotter revealed an association between high levels of J chain mRNA and good prognosis in lung adenocarcinoma patients that correlated with increased B and CD4 T cells and reduced Tregs and M2 macrophages. This study highlights L.RGG aerosol efficacy in impairing lung cancer growth by promoting local immunity and points to this non-invasive strategy to treat individuals at risk of lung cancer.


Assuntos
Adenoma , Lacticaseibacillus rhamnosus , Neoplasias Pulmonares , Probióticos , Camundongos , Animais , Carcinógenos , Temperatura Alta , Neoplasias Pulmonares/patologia , Probióticos/uso terapêutico , Probióticos/farmacologia , Modelos Animais de Doenças , Microambiente Tumoral
2.
Foods ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681366

RESUMO

The strengthening effect of a mild temperature treatment on the antimicrobial efficacy of essential oils has been widely reported, often leading to an underestimation or a misinterpretation of the product's microbial status. In the present study, both a traditional culture-based method and Flow Cytometry (FCM) were applied to monitor the individual or combined effect of Origanum vulgare essential oil (OEO) and mild heat treatment on the culturability and viability of Escherichia coli in a conventional culture medium and in a fruit juice challenge test. The results obtained in the culture medium showed bacterial inactivation with an increasing treatment temperature (55 °C, 60 °C, 65 °C), highlighting an overestimation of the dead population using the culture-based method; in fact, when the FCM method was applied, the prevalence of injured bacterial cells in a viable but non-culturable (VBNC) state was observed. When commercial fruit juice with a pH of 3.8 and buffered at pH 7.0 was inoculated with E. coli ATCC 25922, a bactericidal action of OEO and a higher efficiency of the mild heat at 65 °C for 5' combined with OEO were found. Overall, the combination of mild heat and OEO treatment represents a promising antimicrobial alternative to improve the safety of fruit juice.

3.
Cancer Res ; 81(8): 2195-2206, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483370

RESUMO

Emerging evidence indicates that gut microbiota affect the response to anticancer therapies by modulating the host immune system. In this study, we investigated the impact of gut microbiota on immune-mediated trastuzumab antitumor efficacy in preclinical models of HER2-positive breast cancer and in 24 patients with primary HER2-positive breast cancer undergoing trastuzumab-containing neoadjuvant treatment. In mice, the antitumor activity of trastuzumab was impaired by antibiotic administration or fecal microbiota transplantation from antibiotic-treated donors. Modulation of the intestinal microbiota was reflected in tumors by impaired recruitment of CD4+ T cells and granzyme B-positive cells after trastuzumab treatment. Antibiotics caused reductions in dendritic cell (DC) activation and the release of IL12p70 upon trastuzumab treatment, a mechanism that was necessary for trastuzumab effectiveness in our model. In patients, lower α-diversity and lower abundance of Lachnospiraceae, Turicibacteraceae, Bifidobacteriaceae, and Prevotellaceae characterized nonresponsive patients (NR) compared with those who achieved pathologic complete response (R), similar to antibiotic-treated mice. The transfer of fecal microbiota from R and NR into mice bearing HER2-positive breast cancer recapitulated the response to trastuzumab observed in patients. Fecal microbiota ß-diversity segregated patients according to response and positively correlated with immune signature related to interferon (IFN) and NO2-IL12 as well as activated CD4+ T cells and activated DCs in tumors. Overall, our data reveal the direct involvement of the gut microbiota in trastuzumab efficacy, suggesting that manipulation of the gut microbiota is an optimal future strategy to achieve a therapeutic effect or to exploit its potential as a biomarker for treatment response. SIGNIFICANCE: Evidence of gut microbiota involvement in trastuzumab efficacy represents the foundation for new therapeutic strategies aimed at manipulating commensal bacteria to improve response in trastuzumab-resistant patients.See related commentary by Sharma, p. 1937 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2195/F1.large.jpg.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Receptor ErbB-2 , Trastuzumab/uso terapêutico , Animais , Antibacterianos/farmacologia , Neoplasias da Mama/imunologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linfócitos T CD4-Positivos , Ciclofosfamida/uso terapêutico , Citocinas/sangue , Células Dendríticas/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Granzimas , Humanos , Sistema Imunitário , Imunidade nas Mucosas , Interferons/metabolismo , Interleucina-12/metabolismo , Camundongos , Terapia Neoadjuvante , Óxido Nítrico/metabolismo , Estreptomicina/farmacologia , Taxoides/uso terapêutico , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Vancomicina/farmacologia
4.
Nat Microbiol ; 5(3): 511-524, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31988379

RESUMO

The microbiota has been shown to promote intestinal tumourigenesis, but a possible anti-tumourigenic effect has also been postulated. Here, we demonstrate that changes in the microbiota and mucus composition are concomitant with tumourigenesis. We identified two anti-tumourigenic strains of the microbiota-Faecalibaculum rodentium and its human homologue, Holdemanella biformis-that are strongly under-represented during tumourigenesis. Reconstitution of ApcMin/+ or azoxymethane- and dextran sulfate sodium-treated mice with an isolate of F. rodentium (F. PB1) or its metabolic products reduced tumour growth. Both F. PB1 and H. biformis produced short-chain fatty acids that contributed to control protein acetylation and tumour cell proliferation by inhibiting calcineurin and NFATc3 activation in mouse and human settings. We have thus identified endogenous anti-tumourigenic bacterial strains with strong diagnostic, therapeutic and translational potential.


Assuntos
Firmicutes/fisiologia , Microbioma Gastrointestinal/fisiologia , Neoplasias Intestinais/microbiologia , Intestinos/microbiologia , Adulto , Idoso , Animais , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/microbiologia , Neoplasias do Colo/terapia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Feminino , Firmicutes/isolamento & purificação , Humanos , Hibridização in Situ Fluorescente , Neoplasias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação
5.
Sci Rep ; 9(1): 19525, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862939

RESUMO

Plant polyphenolic compounds are considered a promising source for new antibacterial agents. In this study, we evaluated the antimicrobial activity of a collection of resveratrol-derived monomers and dimers screened as single molecules against a panel of nine foodborne pathogens. The results demonstrated that two monomers (i.e., pterostilbene 2 and (E)-3-hydroxy-4',5-dimethoxystilbene 9) and three dimers (i.e., δ-viniferin 10, viniferifuran 14 and dehydro-δ-viniferin 15) were endowed with significant antibacterial activity against gram-positive bacteria. The exposure of gram-positive foodborne pathogens to 100 µg/mL of 2, 9 and 15 induced severe cell membrane damage, resulting in the disruption of the phospholipid bilayer. The most promising dimeric compound, dehydro-δ-viniferin 15, was tested against Listeria monocytogenes, resulting in a loss of cultivability, viability and cell membrane potential. TEM analysis revealed grave morphological modifications on the cell membrane and leakage of intracellular content, confirming that the cell membrane was the principal biological target of the tested derivative.


Assuntos
Antibacterianos/farmacologia , Resveratrol/química , Microbiologia de Alimentos , Bactérias Gram-Positivas/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana
6.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824443

RESUMO

Surface layers (S-layers) are proteinaceous arrays covering the cell walls of numerous bacteria. Their suggested properties, such as interactions with the host immune system, have been only poorly described. Here, we aimed to elucidate the role of the S-layer from the probiotic bacterial strain Lactobacillus helveticus MIMLh5 in the stimulation of murine bone-marrow-derived dendritic cells (DCs). MIMLh5 induced greater production of interferon beta (IFN-ß), interleukin 10 (IL-10), and IL-12p70, compared to S-layer-depleted MIMLh5 (naked MIMLh5 [n-MIMLh5]), whereas the isolated S-layer was a poor immunostimulator. No differences in the production of tumor necrosis factor alpha (TNF-α) or IL-1ß were found. Inhibition of the mitogen-activated protein kinases JNK1/2, p38, and ERK1/2 modified IL-12p70 production similarly in MIMLh5 and n-MIMLh5, suggesting the induction of the same signaling pathways by the two bacterial preparations. Treatment of DCs with cytochalasin D to inhibit endocytosis before the addition of fluorescently labeled MIMLh5 cells led to a dramatic reduction in the proportion of fluorescence-positive DCs and decreased IL-12 production. Endocytosis and IL-12 production were only marginally affected by cytochalasin D pretreatment when fluorescently labeled n-MIMLh5 was used. Treatment of DCs with fluorescently labeled S-layer-coated polystyrene beads (Sl-beads) resulted in much greater uptake of beads, compared to noncoated beads. Prestimulation of DCs with cytochalasin D reduced the uptake of Sl-beads more than plain beads. These findings indicate that the S-layer plays a role in the endocytosis of MIMLh5 by DCs. In conclusion, this study provides evidence that the S-layer of L. helveticus MIMLh5 is involved in endocytosis of the bacterium, which is important for strong Th1-inducing cytokine production.IMPORTANCE Beneficial microbes may positively affect host physiology at various levels, e.g., by participating in immune system maturation and modulation, boosting defenses and dampening reactions, thus affecting the whole homeostasis. As a consequence, the use of probiotics is increasingly regarded as suitable for more extended applications for health maintenance, not only microbiota balancing. This implies a deep knowledge of the mechanisms and molecules involved in host-microbe interactions, for the final purpose of fine tuning the choice of a probiotic strain for a specific outcome. With this aim, studies targeted to the description of strain-related immunomodulatory effects and the identification of bacterial molecules responsible for specific responses are indispensable. This study provides new insights in the characterization of the food-origin probiotic bacterium L. helveticus MIMLh5 and its S-layer protein as a driver for the cross-talk with DCs.


Assuntos
Células Dendríticas/fisiologia , Endocitose , Lactobacillus helveticus/química , Probióticos/química , Animais , Medula Óssea , Camundongos Endogâmicos C57BL
7.
Cell Rep ; 24(13): 3528-3538, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257213

RESUMO

Pulmonary immunological tolerance to inhaled particulates might create a permissive milieu for lung metastasis. Lung microbiota contribute to pulmonary tolerance; here, we explored whether its manipulation via antibiotic or probiotic aerosolization favors immune response against melanoma metastasis. In lungs of vancomycin/neomycin-aerosolized mice, a decrease in bacterial load was associated with reduced regulatory T cells and enhanced T cell and NK cell activation that paralleled a significant reduction of melanoma B16 lung metastases. Reduction of metastases also occurred in lungs transplanted with bacterial isolates from antibiotic-treated lungs. Aerosolized Lactobacillus rhamnosus strongly promoted immunity against B16 lung metastases as well. Furthermore, probiotics or antibiotics improved chemotherapy activity against advanced B16 metastases. Thus, we identify a role for lung microbiota in metastasis and show that its targeting via aerosolization is a therapy that can prevent metastases and enhance responses to chemotherapy.


Assuntos
Antibacterianos/uso terapêutico , Vigilância Imunológica , Neoplasias Pulmonares/terapia , Pulmão/microbiologia , Microbiota , Probióticos/uso terapêutico , Administração por Inalação , Animais , Antibacterianos/administração & dosagem , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/secundário , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem
8.
Appl Environ Microbiol ; 80(17): 5161-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951779

RESUMO

Bifidobacterium bifidum MIMBb75 is a human intestinal isolate demonstrated to be interactive with the host and efficacious as a probiotic. However, the molecular biology of this microorganism is yet largely unknown. For this reason, we undertook whole-genome sequencing of B. bifidum MIMBb75 to identify potential genetic factors that would explain the metabolic and probiotic attributes of this bacterium. Comparative genomic analysis revealed a 45-kb chromosomal region that comprises 19 putative genes coding for a potential type IV secretion system (T4SS). Thus, we undertook the initial characterization of this genetic region by studying the putative virB1-like gene, named tgaA. Gene tgaA encodes a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT, cd00254.3) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP, pfam05257.4). By means of several in vitro assays, we experimentally confirmed that protein TgaA, consistent with its computationally assigned role, has peptidoglycan lytic activity, which is principally associated to the LT domain. Furthermore, immunofluorescence and immunogold labeling showed that the protein TgaA is abundantly expressed on the cell surface of B. bifidum MIMBb75. According to the literature, the T4SSs, which have not been characterized before in bifidobacteria, can have important implications for bacterial cell-to-cell communication as well as cross talk with host cells, justifying the interest for further studies aimed at the investigation of this genetic region.


Assuntos
Sistemas de Secreção Bacterianos/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Genes Bacterianos , Hidrólise , Dados de Sequência Molecular , Peptidoglicano/metabolismo
9.
Appl Environ Microbiol ; 80(17): 5170-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24814791

RESUMO

Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the host's immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75's cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the host's immune system.


Assuntos
Amidoidrolases/imunologia , Bifidobacterium/enzimologia , Bifidobacterium/imunologia , Diferenciação Celular , Células Dendríticas/imunologia , Peptidoglicano/metabolismo , Amidoidrolases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Parede Celular/química , Células Cultivadas , Cisteína/metabolismo , Histidina/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Peptidoglicano/análise
10.
J Agric Food Chem ; 61(34): 8134-40, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23883473

RESUMO

Bifidobacteria are gaining increasing interest as health-promoting bacteria. Nonetheless, the genus comprises several species, which can exert different effects on human host. Previous studies showed that wild blueberry drink consumption could selectively increase intestinal bifidobacteria, suggesting an important role for the polyphenols and fiber present in wild blueberries. This study evaluated the modulation of the most common and abundant bifidobacterial taxonomic groups inhabiting the human gut in the same fecal samples. The analyses carried out showed that B. adolescentis, B. breve, B. catenulatum/pseudocatelulatum, and B. longum subsp. longum were always present in the group of subjects enrolled, whereas B. bifidum and B. longum subsp. infantis were not. Furthermore, it was found that the most predominant bifidobacterial species were B. longum subsp. longum and B. adolescentis. The results obtained revealed a high interindividual variability; however, a significant increase of B. longum subsp. infantis cell concentration was observed in the feces of volunteers after the wild blueberry drink treatment. This bifidobacterial group was shown to possess immunomodulatory abilities and to relieve symptoms and promote the regression of several gastrointestinal disorders. Thus, an increased cell concentration of B. longum subsp. infantis in the human gut could be considered of potential health benefit. In conclusion, wild blueberry consumption resulted in a specific bifidogenic effect that could positively affect certain populations of bifidobacteria with demonstrated health-promoting properties.


Assuntos
Bebidas/análise , Bifidobacterium/isolamento & purificação , Mirtilos Azuis (Planta)/metabolismo , Intestinos/microbiologia , Adulto , Bifidobacterium/classificação , Bifidobacterium/fisiologia , Biodiversidade , Fezes/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade
11.
Appl Environ Microbiol ; 79(4): 1221-31, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220964

RESUMO

The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention.


Assuntos
Proteínas de Bactérias/imunologia , Imunidade Inata , Fatores Imunológicos/farmacologia , Lactobacillus helveticus/imunologia , Probióticos/farmacologia , Proteínas de Bactérias/genética , Linhagem Celular , DNA Bacteriano/química , DNA Bacteriano/genética , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Lactobacillus helveticus/genética , Dados de Sequência Molecular , Monócitos/imunologia , Monócitos/microbiologia , Análise de Sequência de DNA
12.
Appl Environ Microbiol ; 78(12): 4209-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22504812

RESUMO

The use of proper bacterial strains as probiotics for the pharyngeal mucosa is a potential prophylactic strategy for upper respiratory tract infections. In this context, we characterized in vitro the functional and immunomodulatory properties of the strains Lactobacillus helveticus MIMLh5 and Streptococcus salivarius ST3 that were selected during previous investigations as promising pharyngeal probiotics. In this study, we demonstrated in vitro that strains MIMLh5 and ST3, alone and in combination, can efficiently adhere to pharyngeal epithelial cells, antagonize Streptococcus pyogenes, and modulate host innate immunity by inducing potentially protective effects. In particular, we found that the strains MIMLh5 and ST3 activate U937 human macrophages by significantly inducing the expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Nonetheless, the induction of the anti-inflammatory interleukin-10 (IL-10) by MIMLh5 or ST3 was never lower than that of TNF-α, suggesting that these bacteria can potentially exert a regulatory rather than a proinflammatory effect. We also found that the strains MIMLh5 and ST3 induce cyclooxygenase 2 (COX-2) expression and demonstrated that toll-like receptor 2 (TLR-2) participates in the recognition of the strains MIMLh5 and ST3 by U937 cells. Finally, we observed that these microorganisms grow efficiently when cocultured in milk, suggesting that the preparation of a milk-based fermented product containing both MIMLh5 and ST3 can be a practical solution for the administration of these bacteria. In conclusion, we propose the combined use of L. helveticus MIMLh5 and S. salivarius ST3 for the preparation of novel products that display probiotic properties for the pharyngeal mucosa.


Assuntos
Fatores Imunológicos/farmacologia , Lactobacillus helveticus/fisiologia , Faringe/microbiologia , Probióticos/farmacologia , Streptococcus/fisiologia , Antibiose , Aderência Bacteriana , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/microbiologia , Humanos , Interleucina-10/metabolismo , Lactobacillus helveticus/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Streptococcus/imunologia , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
J Agric Food Chem ; 59(24): 12815-20, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22060186

RESUMO

Wild blueberries are a rich source of polyphenols and other compounds that are highly metabolized by the intestinal microbiota and may, at the same time, affect the intestinal environment itself. A repeated-measure, crossover dietary intervention on human volunteers was designed to study the effect of six week consumption of a wild blueberry ( Vaccinium angustifolium ) drink, versus a placebo drink, in modulating the intestinal microbiota. Relative to total eubacteria, Bifidobacterium spp. significantly increased following blueberry treatment (P ≤ 0.05), while Lactobacillus acidophilus increased after both treatments (P ≤ 0.05). No significant differences were observed for Bacteroides spp., Prevotella spp., Enterococcus spp., and Clostridium coccoides . Bifidobacteria, which have been largely proposed to be of benefit for the host, appeared to be selectively favored suggesting an important role for the polyphenols and fiber present in wild blueberries. Results obtained suggest that regular consumption of a wild blueberry drink can positively modulate the composition of the intestinal microbiota.


Assuntos
Bebidas , Bifidobacterium/crescimento & desenvolvimento , Mirtilos Azuis (Planta) , Frutas , Intestinos/microbiologia , Prebióticos , Adulto , Estudos Cross-Over , Dieta , Fezes/microbiologia , Alimentos em Conserva , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , Polifenóis/administração & dosagem
14.
PLoS One ; 5(11): e15520, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21152088

RESUMO

An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of ß-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms.


Assuntos
Ácidos/metabolismo , Álcalis/metabolismo , Bactérias/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Ácido Carbônico/metabolismo , Ecossistema , Glicólise , Concentração de Íons de Hidrogênio , Hidrólise , L-Lactato Desidrogenase/metabolismo , Viabilidade Microbiana , Streptococcus thermophilus/crescimento & desenvolvimento , Streptococcus thermophilus/metabolismo , Ureia/metabolismo , Urease/metabolismo , beta-Galactosidase/metabolismo
15.
Infect Immun ; 78(11): 4734-43, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20732995

RESUMO

The probiotic approach represents an alternative strategy in the prevention and treatment of infectious diseases, not only at the intestinal level but also at other sites of the body where the microbiota plays a role in the maintenance of physiological homeostasis. In this context, we evaluated in vitro the potential abilities of probiotic and dairy bacteria in controlling Streptococcus pyogenes infections at the pharyngeal level. Initially, we analyzed bacterial adhesion to FaDu hypopharyngeal carcinoma cells and the ability to antagonize S. pyogenes on FaDu cell layers and HaCat keratinocytes. Due to its promising adhesive and antagonistic features, we studied the dairy strain Lactobacillus helveticus MIMLh5, also through in vitro immunological experiments. First, we performed quantification of several cytokines and measurement of NF-κB activation in FaDu cells. MIMLh5 efficiently reduced the induction of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), in a dose-dependent manner. After stimulation of cells with IL-1ß, active NF-κB was still markedly lowered. Nevertheless, we observed an increased secretion of IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) under these conditions. These effects were associated with the ability of MIMLh5 to enhance the expression of the heat shock protein coding gene hsp70. In addition, MIMLh5 increased the GM-CSF/G-CSF ratio. This is compatible with a switch of the immune response toward a TH1 pathway, as supported by our observation that MIMLh5, once in contact with bone marrow-derived dendritic cells, triggered the secretion of TNF-α and IL-2. In conclusion, we propose MIMLh5 as a potential probiotic bacterium for the human pharynx, with promising antagonistic and immunomodulatory properties.


Assuntos
Antibiose , Imunomodulação , Lactobacillus helveticus/crescimento & desenvolvimento , Mucosa/microbiologia , Faringe/microbiologia , Probióticos , Streptococcus pyogenes/crescimento & desenvolvimento , Aderência Bacteriana , Linhagem Celular , Citocinas/metabolismo , Indústria de Laticínios , Células Epiteliais/microbiologia , Humanos , Lactobacillus helveticus/imunologia , Faringe/citologia , Faringe/imunologia , Streptococcus pyogenes/patogenicidade
16.
Appl Environ Microbiol ; 76(12): 3948-58, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20418429

RESUMO

The research described here was aimed at the selection of oral bacteria that displayed properties compatible with their potential use as probiotics for the pharyngeal mucosa. We included in the study 56 bacteria newly isolated from the pharynges of healthy donors, which were identified at the intraspecies level and characterized in vitro for their probiotic potential. The experiments led us to select two potential probiotic bacterial strains (Streptococcus salivarius RS1 and ST3) and to compare them with the prototype oral probiotic S. salivarius strain K12. All three strains efficiently bound to FaDu human epithelial pharyngeal cells and thereby antagonized Streptococcus pyogenes adhesion and growth. All were sensitive to a variety of antibiotics routinely used for the control of upper respiratory tract infections. Immunological in vitro testing on a FaDu layer revealed different responses to RS1, ST3, and K12. RS1 and ST3 modulated NF-kappaB activation and biased proinflammatory cytokines at baseline and after interleukin-1beta (IL-1beta) induction. In conclusion, we suggest that the selected commensal streptococci represent potential pharyngeal probiotic candidates. They could display a good degree of adaptation to the host and possess potential immunomodulatory and anti-inflammatory properties.


Assuntos
Mucosa/microbiologia , Faringe/microbiologia , Probióticos , Streptococcus/fisiologia , Antibacterianos/farmacologia , Antibiose , Aderência Bacteriana , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Citocinas/imunologia , Impressões Digitais de DNA , Células Epiteliais/microbiologia , Humanos , Testes de Sensibilidade Microbiana , NF-kappa B/imunologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Streptococcus/classificação , Streptococcus/crescimento & desenvolvimento , Streptococcus/isolamento & purificação , Estados Unidos
17.
Curr Microbiol ; 59(2): 167-72, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19452211

RESUMO

The aim of this study was to investigate the adhesive phenotype of the human intestinal isolate Bifidobacterium bifidum MIMBb75 to human colon carcinoma cell lines. We have previously shown that the adhesion of this strain to Caco-2 cells is mediated by an abundant surface lipoprotein named BopA. In this study, we found that this strain adheres to Caco-2 and HT-29 cells, and that its adhesion strongly depends on the environmental conditions, including the presence of sugars and bile salts and the pH. Considerably more adhesion to a Caco-2 monolayer occurred in the presence of fucose and mannose and less when MIMBb75 grew in Oxgall bile salts compared to standard environmental conditions. In particular, growth in Oxgall bile salts reduced the adhesion ability of MIMBb75 and modified the SDS-PAGE profile of the cell wall associated proteins of the strain. The pH markedly affected both adhesion to Caco-2 and bacterial autoaggregation. Finally, experiments with sodium metaperiodate suggested that not only proteinaceous determinants are involved in the adhesion process of B. bifidum. In conclusion, it seems that the colonization strategy of this bacterium can be influenced by factors varying along the gastrointestinal tract, such as the presence of specific sugars and bile salts and the pH, possibly limiting the adhesion of B. bifidum to only restricted distal sites of the gut.


Assuntos
Aderência Bacteriana , Bifidobacterium/fisiologia , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Ácidos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/biossíntese , Bifidobacterium/efeitos dos fármacos , Ácidos e Sais Biliares/farmacologia , Metabolismo dos Carboidratos , Linhagem Celular Tumoral , Parede Celular/química , Meios de Cultura/química , Humanos , Concentração de Íons de Hidrogênio
18.
Appl Environ Microbiol ; 74(15): 4695-702, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18539800

RESUMO

We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/fisiologia , Bifidobacterium/fisiologia , Lipoproteínas/fisiologia , Proteínas de Bactérias/isolamento & purificação , Células CACO-2/microbiologia , Parede Celular/fisiologia , Colo/microbiologia , Fezes/microbiologia , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA