Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Biochem Funct ; 42(4): e4064, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38807466

RESUMO

Human dental pulp stem cells are a potentially useful resource for cell-based therapies and tissue repair in dental and medical applications. However, the primary culture of isolated dental pulp stem cells has notably been limited. A major requirement of an ideal human dental pulp stem cell culture system is the preservation of efficient proliferation and innate stemness over prolonged passaging, while also ensuring ease of handling through standard, user-friendly culture methods. In this study, we have engineered a novel human dental pulp stem cell line, distinguished by the constitutive expression of telomerase reverse transcriptase (TERT), and the conditional expression of the R24C mutant cyclin-dependent kinase 4 (CDK4R24C) and Cyclin D1. We have named this cell line Tet-off K4DT hDPSCs. Furthermore, we have conducted a comprehensive comparative analysis of their biological attributes in relation to a previously immortalized human dental pulp stem cells, hDPSC-K4DT, which were immortalized by the constitutive expression of CDK4R24C, Cyclin D1 and TERT. In Tet-off K4DT cells, the expression of the K4D genes can be precisely suppressed by the inclusion of doxycycline. Remarkably, Tet-off K4DT cells demonstrated an extended cellular lifespan, increased proliferative capacity, and enhanced osteogenic differentiation potential when compared to K4DT cells. Moreover, Tet-off K4DT cells had no observable genomic aberrations and also displayed a sustained expression of stem cell markers even at relatively advanced passages. Taken together, the establishment of this new cell line holds immense promise as powerful experimental tool for both fundamental and applied research involving dental pulp stem cells.


Assuntos
Proliferação de Células , Quinase 4 Dependente de Ciclina , Polpa Dentária , Doxiciclina , Células-Tronco , Humanos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Proliferação de Células/efeitos dos fármacos , Doxiciclina/farmacologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Telomerase/metabolismo , Telomerase/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
2.
Cancers (Basel) ; 15(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958336

RESUMO

Cancer stem cells (CSCs) are considered to be responsible for recurrence, metastasis, and resistance to treatment in many types of cancers; therefore, new treatment strategies targeting CSCs are attracting attention. In this study, we fabricated a polyethylene glycol-tagged microwell device that enabled spheroid formation from human oral squamous carcinoma cells. HSC-3 and Ca9-22 cells cultured in the microwell device aggregated and generated a single spheroid per well within 24-48 h. The circular shape and smooth surface of spheroids were maintained for up to five days, and most cells comprising the spheroids were Calcein AM-positive viable cells. Interestingly, the mRNA expression of CSC markers (Cd44, Oct4, Nanog, and Sox2) were significantly higher in the spheroids than in the monolayer cultures. CSC marker-positive cells were observed throughout the spheroids. Moreover, resistance to cisplatin was enhanced in spheroid-cultured cells compared to that in the monolayer-cultured cells. Furthermore, some CSC marker genes were upregulated in HSC-3 and Ca9-22 cells that were outgrown from spheroids. In xenograft model, the tumor growth in the spheroid implantation group was comparable to that in the monolayer culture group. These results suggest that our spheroid culture system may be a high-throughput tool for producing uniform CSCs in large numbers from oral cancer cells.

3.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834290

RESUMO

The differentiation and function of osteocytes are controlled by surrounding cells and mechanical stress; however, the detailed mechanisms are unknown. Recent findings suggest that IL-33 is highly expressed in periodontal tissues in orthodontic tooth movement. The present study aimed to elucidate the effect of IL-33 on the expression of regulatory factors for bone remodeling and their molecular mechanisms in the osteocyte-like cell line MLO-Y4. MLO-Y4 cells were treated with IL-33, and the activation of intracellular signaling molecules and transcriptional factors was determined using Western blot analysis and chromatin immunoprecipitation assay. IL-33 treatment enhanced the expression of IL-6 in MLO-Y4 cells, which was suppressed by the knockdown of the IL-33 receptor ST2L. Additionally, IL-33 treatment induced activation of NF-κB, JNK/AP-1, and p38 MAPK signaling pathways in MLO-Y4 cells. Moreover, pretreatment with specific inhibitors of NF-κB, p38 MAPK, and JNK/AP-1 attenuated the IL-33-induced expression of IL-6. Furthermore, chromatin immunoprecipitation indicated that IL-33 increased c-Jun recruitment to the IL-6 promoter. Overall, these results suggest that IL-33 induces IL-6 expression and regulates osteocyte function via activation of the NF-κB, JNK/AP-1, and p38 MAPK pathways through interaction with ST2L receptors on the plasma membrane.


Assuntos
Interleucina-6 , NF-kappa B , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Interleucina-33/farmacologia , Interleucina-33/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Osteócitos/metabolismo
4.
Cell Biol Int ; 47(10): 1737-1748, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37381608

RESUMO

Chondrogenesis is strictly regulated by several factors, including cytokines, hormones, and extracellular matrix proteins. Mouse teratocarcinoma-derived lineage cells, differentiate into chondrocytes in the presence of insulin. Although ascorbic acid promotes chondrogenic differentiation, the detailed regulative mechanisms underlying its role in chondrogenesis remain unclear. Therefore, in this study, we evaluated the effects of ascorbic acid on insulin-induced chondrogenic differentiation of ATDC5 cells and the underlying intracellular signaling. The results revealed that insulin-stimulated collagen deposition, matrix formation, calcification, and expression of chondrogenic differentiation marker genes in ATDC5 cells. This enhancement by insulin was amplified with the addition of ascorbic acid. Molecular analysis revealed that the activation of insulin-induced phosphoinositide 3-kinase (PI3K)/Akt signaling was enhanced in the presence of ascorbic acid. In contrast, Wnt/ß-catenin signaling was suppressed during chondrocyte differentiation via upregulation of the Wnt agonist, secreted Frizzled-related protein 1 (sFRP-1) and 3 (sFRP-3). Notably, ascorbic acid upregulated the expression of insulin receptors and their substrates (IRS-1 and IRS-2). Furthermore, ascorbic acid reversed the suppression of IRS-1 and IRS-2 protein by insulin. These results indicate that ascorbic acid positively regulates the chondrogenic differentiation of ATDC5 cells via enhancement of insulin signaling. Our findings provide a substantial basis for further elucidation of the regulatory mechanisms of chondrocyte differentiation and the pathophysiology of OA, thus aiding in development of effective treatment strategies.


Assuntos
Ácido Ascórbico , Condrócitos , Animais , Camundongos , Ácido Ascórbico/farmacologia , Condrócitos/metabolismo , Receptor de Insulina/metabolismo , Condrogênese , Fosfatidilinositol 3-Quinases/metabolismo , Diferenciação Celular , Insulina/farmacologia , Insulina/metabolismo , Via de Sinalização Wnt
5.
Dent J (Basel) ; 10(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35200250

RESUMO

Soluble tumor necrosis factor receptors 1 and 2 (sTNF-R1 and sTNF-R2) are reported to protect against excessive TNF-α, a primary mediator of systemic responses to infection. This study aimed to investigate the levels of TNF-α, sTNF-R1, and sTNF-R2 in saliva and to verify whether their dynamics are associated with periodontal health. The study population comprised 28 adult patients. Probing pocket depth, clinical attachment level, and bleeding on probing were assessed, and periodontal inflamed surface area (PISA) was calculated. Stimulated saliva was collected before the oral examinations. The levels of TNF-α, sTNF-R1, sTNF-R2, and total protein (TP) in saliva samples were determined. There were significant positive correlations between TNF-α, sTNF-R1, and sTNF-R2 to TP (/TP) in stimulated saliva. Moreover, there were significant positive correlations between PISA and sTNF-R2/TP. Stepwise multiple regression analysis revealed that PISA was significantly associated with sTNF-R2/TP in saliva; however, TNF-α/TP was not significantly associated with PISA. In conclusion, this study demonstrates that significant relationships exist between the salivary levels of TNF-α and sTNF-R1, and that salivary sTNF-R2 is associated with the expansion of inflamed periodontal tissue.

6.
PLoS One ; 17(2): e0262612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196318

RESUMO

Orthodontic treatment requires the regulation of bone remodeling in both compression and tension sides. Transforming growth factor-ß1 (TGF-ß1) is an important coupling factor for bone remodeling. However, the mechanism underlying the TGF-ß1-mediated regulation of the osteoclast-supporting activity of osteoblasts and stromal cells remain unclear. The current study investigated the effect of TGF-ß1 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in stromal cells induced by 1α,25(OH)2D3 (D3) and dexamethasone (Dex). TGF-ß1 downregulated the expression of RANKL induced by D3 and Dex in mouse bone marrow stromal lineage, ST2 cells. Co-culture system revealed that TGF-ß1 suppressed osteoclast differentiation from bone marrow cell induced by D3 and Dex-activated ST2 cells. The inhibitory effect of TGF-ß1 on RANKL expression was recovered by inhibiting the interaction between TGF-ß1 and the TGF-ß type I/activin receptor or by downregulating of smad2/3 expression. Interestingly, TGF-ß1 degraded the retinoid X receptor (RXR)-α protein which forms a complex with vitamin D receptor (VDR) and regulates transcriptional activity of RANKL without affecting nuclear translocation of VDR and phosphorylation of signal transducer and activator of transcription3 (STAT3). The degradation of RXR-α protein by TGF-ß1 was recovered by a ubiquitin-proteasome inhibitor. We also observed that poly-ubiquitination of RXR-α protein was induced by TGF-ß1 treatment. These results indicated that TGF-ß1 downregulates RANKL expression and the osteoclast-supporting activity of osteoblasts/stromal cells induced by D3 and Dex through the degradation of the RXR-α protein mediated by ubiquitin-proteasome system.


Assuntos
Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Técnicas de Cocultura , Leupeptinas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Osteoclastos/citologia , Inibidores de Proteassoma/farmacologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Transfecção , Ubiquitinação/genética
7.
Jpn Dent Sci Rev ; 57: 201-208, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34703508

RESUMO

Periodontal disease is an inflammatory disease caused by periodontopathogenic bacteria, which eventually leads to bone tissue (alveolar bone) destruction as inflammation persists. Periodontal tissues have an immune system against the invasion of these bacteria, however, due to the persistent infection by periodontopathogenic bacteria, the host innate and acquired immunity is impaired, and tissue destruction, including bone tissue destruction, occurs. Osteoclasts are essential for bone destruction. Osteoclast progenitor cells derived from hematopoietic stem cells differentiate into osteoclasts. In addition, bone loss occurs when bone resorption by osteoclasts exceeds bone formation by osteoblasts. In inflammatory bone disease, inflammatory cytokines act on osteoblasts and receptor activator of nuclear factor-κB ligand (RANKL)-producing cells, resulting in osteoclast differentiation and activation. In addition to this mechanism, pathogenic factors of periodontal bacteria and mechanical stress activate osteoclasts and destruct alveolar bone in periodontitis. In this review, we focused on the mechanism of osteoclast activation in periodontitis and provide an overview based on the latest findings.

8.
Sci Rep ; 11(1): 15078, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301979

RESUMO

We aimed to assess the validity of the self-report questionnaire for periodontitis in a Japanese population. A Japanese 9-item self-report questionnaire, developed by translating English-version questions that were used to detect periodontitis, was validated against full-mouth clinically-assessed periodontitis in 949 Japanese adults (average age = 43.2 years). Multivariable logistic regression modeling was used to calculate the area under the receiver operating characteristic curve (AUC), wherein the periodontitis case definition of the Centers for Disease Control and Prevention/American Academy of Periodontology was considered the gold standard. Severe, moderate, and mild periodontitis were identified in 6.2%, 30.0%, and 6.7% of the study population, respectively. Self-reported oral health questions combined with socio-demographic and health-related variables had an AUC > 0.70 (range, 0.71-0.87) for any periodontitis category. Four oral health questions ("have gum disease," "loose tooth," "lost bone," and "bleeding gums") were selected in the parsimonious model for severe periodontitis. The periodontitis screening score generated by the responses to these four questions had an AUC, sensitivity, and specificity of 0.82, 73.1%, and 74.3%, respectively, where the cut-off was set at 2 points. In conclusion, a locally adapted version of the self-report questionnaire had an acceptable diagnostic capacity for the detection of periodontitis in this study population.


Assuntos
Periodontite/epidemiologia , Adulto , Idoso , Povo Asiático , Feminino , Humanos , Japão/epidemiologia , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Saúde Bucal , Prevalência , Curva ROC , Autorrelato , Sensibilidade e Especificidade , Inquéritos e Questionários , Adulto Jovem
9.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915775

RESUMO

Although the anti-tumor and anti-infective properties of ß-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of ß-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize ß-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker's yeast, as well as ß-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of ß-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of ß-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Assuntos
Glucanos/metabolismo , Osteogênese/fisiologia , Animais , Regeneração Óssea , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Diferenciação Celular/efeitos dos fármacos , Glucanos/farmacologia , Humanos , Imunomodulação , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Receptores Imunológicos/metabolismo
10.
Carbohydr Polym ; 253: 117285, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278951

RESUMO

ß-glucans are potent immunomodulators, with effects on innate and adaptive immune responses via dectin-1 as the main receptor. In this study, we investigated the biological effect of ß-glucan from Schizophyllum commune, called Schizophyllan (SPG) on Interleukin-10 (IL-10) expression induced by a lipopolysaccharide (LPS) from Aggregatibacter actinomycetemcomitans in murine macrophages (J774.1). SPG and dectin-1 interaction up-regulates LPS-induced IL-10 expression. The regulative effect of SPG on IL-10 expression is dependent on prolongation of nuclear translocation activity of nuclear factor-kappa B (NF-κBα) pathway induced by LPS. We also found that LPS-induced phosphorylation of mitogen- and stress-activated protein kinase 1 (MSK1) and cAMP-responsive-element-binding protein (CREB), followed by up-regulation of IL-10, was stimulated by SPG priming via activation of the spleen tyrosine kinase (Syk). Our data indicate that SPG augments the anti-inflammatory response in murine macrophages which can be useful to create an intervention for periodontal disease treatment.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aggregatibacter actinomycetemcomitans/química , Polissacarídeos Fúngicos/farmacologia , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Schizophyllum/química , Sizofirano/farmacologia , Adjuvantes Imunológicos/metabolismo , Animais , Polissacarídeos Fúngicos/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Infecções por Pasteurellaceae/tratamento farmacológico , Infecções por Pasteurellaceae/microbiologia , Doenças Periodontais/tratamento farmacológico , Doenças Periodontais/microbiologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sizofirano/metabolismo
11.
J Cell Physiol ; 236(7): 5098-5107, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33305824

RESUMO

Immunoreceptors expressed on osteoclast precursor cells modify osteoclast differentiation and bone resorption activity. Dectin-1 is a lectin receptor of ß-glucan and is specifically expressed in osteoclast precursor cells. In this study, we evaluated the bioactivity of ß-glucan on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and observed that glucan from baker's yeast inhibited this process in mouse bone marrow cells and dectin-1-overexpressing RAW264.7 (d-RAW) cells. In conjunction, RANKL-induced nuclear factor of activated T cell c1 expression was suppressed, subsequently downregulating TRAP and Oc-stamp. Additionally, nuclear factor-kappa B activation and the expression of c-fos and Blimp1 were reduced in d-RAW cells. Furthermore, glucan from baker's yeast induced the degradation of Syk protein, essential factor for osteoclastogenesis. These results suggest that glucan from baker's yeast suppresses RANKL-induced osteoclastogenesis and can be applied as a new treatment strategy for bone-related diseases.


Assuntos
Lectinas Tipo C/metabolismo , Osteoclastos/citologia , Osteogênese/fisiologia , Ligante RANK/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Animais , Reabsorção Óssea/patologia , Linhagem Celular , Proteínas de Membrana/metabolismo , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/biossíntese , Proteínas Proto-Oncogênicas c-fos/biossíntese , Células RAW 264.7 , Fosfatase Ácida Resistente a Tartarato/metabolismo
12.
Regen Ther ; 14: 59-71, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31988996

RESUMO

INTRODUCTION: Human periodontal ligament mesenchymal stem cells (hPDLMSCs) have been known that they play important roles in homeostasis and regeneration of periodontal tissues. Additionally, spheroids are superior to monolayer-cultured cells. We investigated the characteristics and potential of periodontal tissue regeneration in co-cultured spheroids of hPDLMSCs and human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. METHODS: Co-cultured spheroids were prepared with cell ratios of hPDLMSCs: HUVECs = 1:1, 1:2, and 2:1, using microwell chips. Real-time polymerase chain reaction (PCR) analysis, Enzyme-Linked Immuno Sorbent Assay (ELISA), and nodule formation assay were performed to examine the properties of co-cultured spheroids. Periodontal tissue defects were prepared in the maxillary first molars of rats and subjected to transplantation assay. RESULTS: The expression levels of stemness markers, vascular endothelial growth factor (VEGF), osteogenesis-related genes were up-regulated in co-cultured spheroids, compared with monolayer and spheroid-cultured hPDLMSCs. The nodule formation was also increased in co-cultured spheroids, compared with monolayer and spheroid cultures of hPDLMSCs. Treatment with co-cultured spheroids enhanced new cementum formation after 4 or 8 weeks of transplantation, although there was no significant difference in the new bone formation between co-cultured spheroids and hPDLMSC spheroids. CONCLUSIONS: We found that co-cultured spheroids enhance the periodontal tissue regeneration. Co-cultured spheroids of hPDLMSCs and HUVECs may be a useful therapy that can induce periodontal tissue regeneration.

13.
FEMS Microbiol Lett ; 366(8)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098636

RESUMO

ß-glucan is an abundant cell wall component of fungi and yeast. Dectin-1, a ß-glucan receptor, plays an important regulatory role in the natural immunity. In the present study, we investigated the effect of ß-glucan on mouse macrophages that had been invaded by the periodontopathic bacterium, Aggregatibacter actinomycetemcomitans. Exposure to curdlan, a type of ß-glucan, suppressed cell death and led to the accumulation of a sub-G1-phase population upon A. actinomycetemcomitans invasion under conditions of constitutive expression of dectin-1. Members of the nucleotide-binding domain leucine-rich repeat-containing (NLR) protein family, such as NLR protein 3 (NLRP3), NLR family apoptosis inhibitory protein (NAIP), and NLR family CARD domain-containing protein 4 (NLRC4), as well as an associated protein, caspase-11, were clearly detected in A. actinomycetemcomitans-invaded control RAW cells (c-RAW cells; negative control). Interestingly, NAIP expression was upregulated and caspase-11 expression was downregulated by dectin-1 activity in A. actinomycetemcomitans-invaded dectin-1 overexpressing RAW 264.7 cells (d-RAW cells), suggesting that dectin-1 in macrophages regulates cell death upon A. actinomycetemcomitans invasion. These results support a potential correlation between dectin-1 and regulation of cell death in macrophages.


Assuntos
Aggregatibacter actinomycetemcomitans/patogenicidade , Caspases Iniciadoras/metabolismo , Morte Celular/genética , Lectinas Tipo C/genética , Macrófagos/microbiologia , beta-Glucanas/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Células RAW 264.7 , Transdução de Sinais , beta-Glucanas/farmacologia
14.
Biochem Biophys Res Commun ; 512(3): 537-543, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914204

RESUMO

Hyaluronic acid (HA) has a pivotal role in bone and cartilage metabolism. In this study, we investigated the effect and underlying mechanisms of HA accumulation on the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) induced by 1α,25(OH)2D3 and dexamethasone in stromal cells, which support osteoclastogenesis. Degradation of HA by hyaluronidase (HA'ase) treatment enhanced the expression of RANKL in ST2 cells stimulated with 1α,25(OH)2D3 and dexamethasone. Down-regulation of hyaluronan synthase 2 (HAS2) expression by siRNA also stimulated RANKL expression induced by 1α,25(OH)2D3 and dexamethasone. Results from a cell co-culture system with bone marrow cell showed that 1α,25(OH)2D3 and dexamethasone-induced RANKL expression in HA'ase treated- and HAS2 siRNA transfected-ST2 cells was down-regulated by treatment of cells with high molecular weight HA. In contrast, transforming growth factor-ß1 (TGF-ß1), which stimulates HAS2 expression and HA synthesis, down-regulated RANKL expression induced by 1α,25(OH)2D3 and dexamethasone. Interestingly, knockdown of has2 gene enhanced the expression of vitamin D receptor (VDR) and phosphorylation of signal transducers and activator of transcription 3 (STAT3) in ST2 cells stimulated by 1α,25(OH)2D3 and dexamethasone. These results indicate that accumulation of HA in bone marrow cells may affect RANKL-mediated osteoclast-supporting activity via regulation of VDR and STAT3 signaling pathways.


Assuntos
Ácido Hialurônico/metabolismo , Osteogênese , Ligante RANK/metabolismo , Células Estromais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Masculino , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Células Estromais/citologia
15.
J Cell Biochem ; 120(8): 12604-12617, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825233

RESUMO

Macrophages, critical modulators of the immune response, polarize into various phenotypes, including M1 and M2. M1 macrophages are typically activated by lipopolysaccharide and produce proinflammatory cytokines. Conversely, M2 macrophages are activated by stimulation with interleukin 4 (IL)-4 and promote tissue remodeling and anti-inflammatory reactions. Recently, polyunsaturated fatty acids (PUFAs) have been shown to play important roles in the regulation of inflammation. Docosahexaenoic acid (DHA), a PUFA, has anti-inflammatory effects on chronic inflammatory disease, but its role in macrophage polarization remains unclear. In this study, we clarified the effects of DHA on macrophage polarization using U937 cells. Treatment with DHA resulted in upregulation of M2 macrophage markers and increased secretion of anti-inflammatory cytokines by U937 cells. IL-4, but not DHA, triggered phosphorylation of signal transducer and activator of transcription 6 (STAT6). DHA enhanced the expression of krüppel-like factor-4 (KLF4), a transcription factor involved in the regulation of macrophage polarization and increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK). A selective inhibitor of p38 MAPK downregulated the expression of CD206 in DHA-treated U937 cells. Moreover, inhibitors of autophagy suppressed the phosphorylation of p38 MAPK and the expression of CD206 in DHA-treated U937 cells. Expression of microtubule-associated protein light chain 3-II, which is involved in autophagosome formation, was enhanced in DHA-treated U937 cells. Taken together, these results indicated that DHA enhanced the expression of M2 macrophage markers through the p38 MAPK signaling pathway and autophagy, suggesting that DHA regulates M2 macrophage polarization and plays an important role in innate immunity.


Assuntos
Autofagia , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Interleucina-4/metabolismo , Fator 4 Semelhante a Kruppel , Macrófagos/metabolismo , Macrófagos/fisiologia , Células THP-1 , Células U937
16.
J Biomed Mater Res B Appl Biomater ; 107(7): 2281-2287, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30689290

RESUMO

Nanoparticles are used in industry and medicine, because of their physiochemical properties, such as size, charge, large surface area and surface reactivity. Recently, metal nanoparticles were reported to show cell toxicity on cancer cells. In this study, we focused novel platinum nanoparticles-conjugated latex beads (P2VPs), platinum nanocomposite (PtNCP) beads, and investigated the possibility to incorporate novel anti-cancer effect of these combined nanoparticles. Oral squamous cell carcinoma cell lines, HSC-3-M3 cells were injected subcutaneously into the back of nude mice to produce a xenograft model. PtNCP beads were injected locally and examined by measuring tumor volume and comparing pathological histology. PtNCP beads treatment suppressed tumor growth and identified increasing pathological necrotic areas, in vivo. PtNCP beads inhibited the cell viability of HSC-3-M3 cells in dose-dependent manner and induced the cytotoxicity with extracellular LDH value, in vitro. Furthermore, SEM images were morphologically observed in PtNCP beads-treated HSC-3-M3 cells. The aggregation of the PtNCP beads on the cell membrane, the destructions of the cell membrane and globular structures were observed in the SEM image. Our results indicated that a potential anti-cancer effect of the PtNCP beads, suggesting the possibility as a therapeutic tool for cancer cell-targeted therapy. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2281-2287, 2019.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Bucais , Nanocompostos , Platina , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Platina/química , Platina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Cell Physiol ; 234(2): 1745-1757, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30105896

RESUMO

Ameloblastin (Ambn) is an extracellular matrix protein and member of the family of enamel-related gene products. Like amelogenin, Ambn is mainly associated with tooth development, especially biomineralization of enamel. Previous studies have shown reductions in the skeletal dimensions of Ambn-deficient mice, suggesting that the protein also has effects on the differentiation of osteoblasts and/or osteoclasts. However, the specific pathways used by Ambn to influence osteoclast differentiation have yet to be identified. In the present study, two cellular models, one based on bone marrow cells and another on RAW264.7 cells, were used to examine the effects of Ambn on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The results showed that Ambn suppresses osteoclast differentiation, cytoskeletal organization, and osteoclast function by the downregulation of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts, actin ring formation, and areas of pit resorption. The expression of the osteoclast-specific genes TRAP, MMP9, cathepsin K, and osteoclast stimulatory transmembrane protein (OC-STAMP) was abolished in the presence of Ambn, while that of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), the master regulatory factor of osteoclastogenesis, was also attenuated by the downregulation of c-Fos expression. In Ambn-induced RAW264.7 cells, phosphorylation of cAMP-response element-binding protein (CREB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), but not extracellular signal-regulated kinase 1/2 (ERK1/2), was reduced. Calcium oscillation was also decreased in the presence of Ambn, suggesting its involvement in both RANKL-induced osteoclastogenesis and costimulatory signaling. B-lymphocyte-induced maturation protein-1 (Blimp1), a transcriptional repressor of negative regulators of osteoclastogenesis, was also downregulated by Ambn, resulting in the elevated expression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB), B-cell lymphoma 6 (Bcl6), and interferon regulatory factor-8 (Irf8). Taken together, these findings suggest that Ambn suppresses RANKL-induced osteoclastogenesis by modulating the NFATc1 axis.


Assuntos
Proteínas do Esmalte Dentário/farmacologia , Macrófagos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Animais , Sinalização do Cálcio , Diferenciação Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação para Baixo , Macrófagos/metabolismo , Masculino , Camundongos , Osteoclastos/metabolismo , Células RAW 264.7
18.
Cell Biol Int ; 42(12): 1622-1631, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238554

RESUMO

Histone deacetylase has attracted much attention as an epigenetic factor, and the modulation of histone and transcription factor acetylation status is important for regulating gene expression. Moreover, histone deacetylase inhibitors are involved in cellular growth and differentiation. In the present study, we examined the effects of Ky-2, a hybrid-compound HDAC inhibitor, on inflammatory reactions and the polarization of macrophages in vitro. Human monocyte-like THP-1 cells were polarized to macrophage-like cells using phorbol 12-myristate 13-acetate, and then polarized to M1 macrophages with LPS. Ky-2 inhibited HDAC2 expression and enhanced the acetylation of histone H3 in THP-1 cells. It also downregulated the expression of the IL-1ß-encoding gene and the LPS-induced phosphorylation of p38 mitogen-activated protein kinases in THP-1 cells. Moreover, the expression of nod-like receptor protein 3 and cleaved caspase-1 p20 was downregulated in Ky-2-treated THP-1 cells. In contrast, this agent upregulated the expression of IL-1ra in LPS-treated THP-1 cells. These results indicate that Ky-2-treatment downregulates the expression of the inflammatory cytokine, IL-1ß, in LPS-treated THP-1 cells, suggesting that Ky-2 might regulate M1 macrophage polarization through the suppression of inflammatory responses such as NLRP3 inflammasome activation.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Inflamação/patologia , Macrófagos/patologia , Acetilação , Ativação Enzimática/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Inflamassomos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1
19.
Inflamm Regen ; 38: 16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977413

RESUMO

BACKGROUND: Zoledronic acid (Zol), one of the bisphosphonates, is frequently utilized for the treatment of osteoporosis and bone metastasis. However, the onset of medication-related osteonecrosis of the jaw (MRONJ) following dental treatments has become a serious issue. We reported previously that osteonecrosis can be induced by Zol and lipopolysaccharide (LPS) in vivo, suggesting the involvement of Zol in inflammation. Macrophages are divided into M1/M2 macrophages. M1 macrophages are involved in the induction and exacerbation of inflammation and express proinflammatory mediators including interleukin (IL)-1. On the other hand, M2 macrophages are associated with anti-inflammatory reactions through the expression of anti-inflammatory cytokines, such as IL-10. In the present study, we clarified the effects of Zol on M1/M2 macrophage polarization in vitro. METHODS: Human monocytic THP-1 cells were polarized to macrophage-like cells by phorbol 12-myristate 13-acetate (PMA), and, after culturing for an additional 24 h with or without Zol, then polarized to M1 macrophages by LPS or to M2 macrophages by IL-4. Cell viability was examined by the WST-8 assay. Gene expression was confirmed by the real-time polymerase chain reaction. Protein expression was detected by western blotting and enzyme-linked immunosorbent assays. RESULTS: Zol treatment upregulated the expression of IL-1ß mRNA and protein through NLRP3 inflammasome activation in LPS-treated THP-1 cells. Zol treatment did not affect the expression of IL-10, IL-1ra, or CD206 in IL-4-treated THP-1 cells. CONCLUSIONS: Zol enhanced LPS-induced M1, but not M2, macrophage polarization through the NLRP3 inflammasome-dependent pathway, resulting in the production of inflammatory cytokines in THP-1 cells.

20.
J Cell Biochem ; 119(8): 6974-6985, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737562

RESUMO

Several growth factors in bone tissues are reported to be associated with osteoclastogenesis. Activin-A, a member of the transforming growth factor-ß (TGF-ß) family is known to be present in bone tissues and an important regulator in osteoclastogenesis with SMAD-mediated signaling being crucial for inducing osteoclast differentiation. In the present study, we examined the effect and underlying mechanisms of activin-A on osteoclast formation in vitro culture systems. Activin-A enhanced osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW 264.7 cells induced by receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) and/or macrophage stimulating factor (M-CSF). We also found that activin-A stimulated bone resorption and actin ring formation induced by RANKL and/or M-CSF. Furthermore, activin-A enhanced RANKL-induced expression of nuclear factor of activated T cell cytoplasmic 1 (NFATc1), a key regulator of osteoclastogenesis, thereby increasing osteoclastogenesis-related marker gene expression, including tartrate-resistant acid phosphatase, osteoclast stimulatory transmembrane protein, and cathepsin K. Blockage of receptor binding by follistatin, an activing-binding protein suppressed the activin-A-mediated stimulation of NFATc1. In addition, activin-A increased RANKL-induced c-fos expression without significantly affecting the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathway. Pre-treatment of the cells with a specific inhibitor of SMAD2/3 attenuated the activin-A-induced expression of NFATc1 and co-immunoprecipitation assay revealed that treatment with activin-A increased physical interaction of phosphorylated-c-fos and phosphorylated-SMAD2 protein induced by RANKL. These results suggest that activin-A enhances RANKL-induced osteoclast formation mediated by interaction of c-fos and smad2/3.


Assuntos
Ativinas/farmacologia , Células da Medula Óssea/metabolismo , Osteoclastos/metabolismo , Animais , Células da Medula Óssea/citologia , Catepsina K/metabolismo , Folistatina/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ligante RANK/metabolismo , Células RAW 264.7 , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA