Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Poult Sci ; 103(5): 103630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513548

RESUMO

During the poultry sperm cryopreservation process, an excess of reactive oxygen species is generated resulting in oxidative stress which harms the quality of avian spermatozoa. To counteract this effect, the addition of exogenous antioxidants, such as Pectoliv-80A (a by-product of olive oil), to the cryopreservation diluent is interesting. For this purpose, 16 roosters belonging to the Utrerana avian breed were used. Six semen pools (from the 6 different replicates) were divided into 4 aliquots corresponding to different concentrations of Pectoliv-80A that were tested (0, 300, 400, and 500 µg/mL), and the cryopreservation process was carried out. To evaluate post-thawing semen quality, different parameters such as motility, membrane functionality, reactive oxygen species production, lipid peroxidation, and acrosome integrity were studied. A discriminant canonical analysis was used to determine both the differences between the Pectoliv-80A concentration groups and the discriminant power of the aforementioned parameter used for semen evaluation. Total motility and membrane functionality were reported to be the most discriminant variables for differentiating the different antioxidant enrichment groups and concluded that concentrations of 300 µg/mL showed the most desirable quality of post-thawing semen. The present study could lead to the optimization of both cryopreservation and quality evaluation techniques of the sperm of rooster species, that support the conservation program of endangered local breeds.


Assuntos
Antioxidantes , Galinhas , Criopreservação , Azeite de Oliva , Preservação do Sêmen , Espermatozoides , Animais , Masculino , Criopreservação/veterinária , Criopreservação/métodos , Antioxidantes/farmacologia , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Galinhas/fisiologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Crioprotetores/farmacologia , Análise do Sêmen/veterinária , Análise Discriminante
2.
Cancer Treat Rev ; 125: 102719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490088

RESUMO

Pancreatic cancer is one of the tumors with the worst prognosis, and unlike other cancers, few advances have been made in recent years. The only curative option is surgery, but only 15-20% of patients are candidates, with a high risk of relapse. In advanced pancreatic cancer there are few first-line treatment options and no validated biomarkers for better treatment selection. The development of targeted therapies in pancreatic cancer is increasingly feasible due to tumor-agnostic treatments, such as PARP inhibitors in patients with BRCA1, BRCA2 or PALB2 alterations or immunotherapies in patients with high microsatellite instability/tumor mutational burden. In addition, other therapeutic molecules have been developed for patients with KRAS G12C mutation or fusions in NTRK or NRG1. Consequently, there has been a growing interest in biomarkers that may help guide targeted therapy in pancreatic cancer. Therefore, this review aims to offer an updated perspective on biomarkers with therapeutic potential in pancreatic cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/genética , Mutação , Medicina de Precisão , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Instabilidade de Microssatélites
3.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918453

RESUMO

Metabolic plasticity, which determines tumour growth and metastasis, is now understood to be a flexible and context-specific process in cancer metabolism. One of the major pathways contributing to metabolic adaptations in eucaryotic cells is autophagy, a cellular degradation and recycling process that is activated during periods of starvation or stress to maintain metabolite and biosynthetic intermediate levels. Consequently, there is a close association between the metabolic adaptive capacity of tumour cells and autophagy-related pathways in cancer. Additionally, nitric oxide regulates protein function and signalling through S-nitrosylation, a post-translational modification that can also impact metabolism and autophagy. The primary objective of this review is to provide an up-to-date overview of the role of S-nitrosylation at the intersection of metabolism and autophagy in cancer. First, we will outline the involvement of S-nitrosylation in the metabolic adaptations that occur in tumours. Then, we will discuss the multifaceted role of autophagy in cancer, the interplay between metabolism and autophagy during tumour progression, and the contribution of S-nitrosylation to autophagic dysregulation in cancer. Finally, we will present insights into relevant therapeutic aspects and discuss prospects for the future.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Autofagia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Neoplasias/patologia
4.
Biomark Res ; 11(1): 88, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798621

RESUMO

Pancreatic cancer is one of the most challenging cancers due to its high mortality rates. Considering the late diagnosis and the limited survival benefit with current treatment options, it becomes imperative to optimize early detection, prognosis and prediction of treatment response. To address these challenges, significant research efforts have been undertaken in recent years to develop liquid-biopsy-based biomarkers for pancreatic cancer. In particular, an increasing number of studies point to cell-free DNA (cfDNA) methylation analysis as a promising non-invasive approach for the discovery and validation of epigenetic biomarkers with diagnostic or prognostic potential. In this review we provide an update on recent advancements in the field of cfDNA methylation analysis in pancreatic cancer. We discuss the relevance of DNA methylation in the context of pancreatic cancer, recent cfDNA methylation research, its clinical utility, and future directions for integrating cfDNA methylation analysis into routine clinical practice.

5.
Biomed Pharmacother ; 167: 115592, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778272

RESUMO

INTRODUCTION: Glycogen synthase kinase 3 (GSK-3) has been proposed as a novel cancer target due to its regulating role in both tumor and immune cells. However, the connection between GSK-3 and immunoevasive contexture, including tumor budding (TB) has not been previously examined. METHODS: we investigated the expression levels of total GSK-3 as well as its isoforms (GSK-3ß and GSK-3α) and examined their potential correlation with TB grade and the programmed cell death-ligand 1 (PD-L1) in colorectal cancer (CRC) tumor samples. Additionally, we compared the efficacy of GSK-3-inhibition with PD-1/PD-L1 blockade in humanized patient-derived (PDXs) xenografts models of high-grade TB CRC. RESULTS: we show that high-grade (BD3) TB CRC is associated with elevated expression levels of total GSK-3, specifically the GSK-3ß isoform, along with increased expression of PD-L1 in tumor cells. Moreover, we define an improved risk stratification of CRC patients based on the presence of GSK-3+/PD-L1+/BD3 tumors, which are associated with a worse prognosis. Significantly, in contrast to the PD-L1/PD-1 blockade approach, the inhibition GSK-3 demonstrated a remarkable enhancement in the antitumor response. This was achieved through the reduction of tumor buds via necrosis and apoptosis pathways, along with a notable increase of activated tumor-infiltrating CD8+ T cells, NK cells, and CD4- CD8- T cells. CONCLUSIONS: our study provides compelling evidence for the clinical significance of GSK-3 expression and TB grade in risk stratification of CRC patients. Moreover, our findings strongly support GSK-3 inhibition as an effective therapy specifically targeting high-grade TB in CRC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Quinase 3 da Glicogênio Sintase , Glicogênio Sintase Quinase 3 beta , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Relevância Clínica , Neoplasias Colorretais/patologia
6.
Clin Epigenetics ; 15(1): 118, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481552

RESUMO

BACKGROUND: Pancreatic cancer is the most lethal cancer with a dismal prognosis mainly due to diagnosis at advanced stage and ineffective treatments. CA19-9 levels and computed tomography (CT) imaging are the main standard criteria for evaluating disease progression and treatment response. In this study we explored liquid biopsy-based epigenetic biomarkers for prognosis and monitoring disease in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). METHODS: Plasma samples were collected from 44 mPDAC patients at the time of diagnosis, and in 15 of them, additional samples were obtained during follow-up of the disease. After cell-free DNA (cfDNA), isolation circulating levels of methylated NPTX2, SPARC, BMP3, SFRP1 and TFPI2 genes were measured using digital droplet PCR (ddPCR). BEAMing technique was performed for quantitation of RAS mutations in cfDNA, and CA19-9 was measured using standard techniques. RESULTS: NPTX2 was the most highly and frequently methylated gene in cfDNA samples from mPDAC patients. Higher circulating NPTX2 methylation levels at diagnosis were associated with poor prognosis and efficiently stratified patients for prediction of overall survival (6.06% cut-off, p = 0.0067). Dynamics of circulating NPTX2 methylation levels correlated with disease progression and response to therapy and predicted better than CA19-9 the evolution of disease in mPDAC patients. Remarkably, in many cases the disease progression detected by CT scan was anticipated by an increase in circulating NPTX2 methylation levels. CONCLUSIONS: Our study supports circulating NPTX2 methylation levels as a promising liquid biopsy-based clinical tool for non-invasive prognosis, monitoring disease evolution and response to treatment in mPDAC patients.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Ácidos Nucleicos Livres/genética , Progressão da Doença , Neoplasias Pancreáticas
7.
Mol Cell ; 83(13): 2303-2315.e6, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37390817

RESUMO

Modification of nucleic acids by ADP-ribosylation is catalyzed by various ADP-ribosyltransferases, including the DarT enzyme. The latter is part of the bacterial toxin-antitoxin (TA) system DarTG, which was shown to provide control of DNA replication and bacterial growth as well as protection against bacteriophages. Two subfamilies have been identified, DarTG1 and DarTG2, which are distinguished by their associated antitoxins. While DarTG2 catalyzes reversible ADP-ribosylation of thymidine bases employing a macrodomain as antitoxin, the DNA ADP-ribosylation activity of DarTG1 and the biochemical function of its antitoxin, a NADAR domain, are as yet unknown. Using structural and biochemical approaches, we show that DarT1-NADAR is a TA system for reversible ADP-ribosylation of guanosine bases. DarT1 evolved the ability to link ADP-ribose to the guanine amino group, which is specifically hydrolyzed by NADAR. We show that guanine de-ADP-ribosylation is also conserved among eukaryotic and non-DarT-associated NADAR members, indicating a wide distribution of reversible guanine modifications beyond DarTG systems.


Assuntos
Antitoxinas , Guanosina , ADP-Ribosilação , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Células Eucarióticas/metabolismo , Antitoxinas/genética , Adenosina Difosfato Ribose/metabolismo
8.
Nat Commun ; 14(1): 3200, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268618

RESUMO

In the mammalian DNA damage response, ADP-ribosylation signalling is of crucial importance to mark sites of DNA damage as well as recruit and regulate repairs factors. Specifically, the PARP1:HPF1 complex recognises damaged DNA and catalyses the formation of serine-linked ADP-ribosylation marks (mono-Ser-ADPr), which are extended into ADP-ribose polymers (poly-Ser-ADPr) by PARP1 alone. Poly-Ser-ADPr is reversed by PARG, while the terminal mono-Ser-ADPr is removed by ARH3. Despite its significance and apparent evolutionary conservation, little is known about ADP-ribosylation signalling in non-mammalian Animalia. The presence of HPF1, but absence of ARH3, in some insect genomes, including Drosophila species, raises questions regarding the existence and reversal of serine-ADP-ribosylation in these species. Here we show by quantitative proteomics that Ser-ADPr is the major form of ADP-ribosylation in the DNA damage response of Drosophila melanogaster and is dependent on the dParp1:dHpf1 complex. Moreover, our structural and biochemical investigations uncover the mechanism of mono-Ser-ADPr removal by Drosophila Parg. Collectively, our data reveal PARP:HPF1-mediated Ser-ADPr as a defining feature of the DDR in Animalia. The striking conservation within this kingdom suggests that organisms that carry only a core set of ADP-ribosyl metabolising enzymes, such as Drosophila, are valuable model organisms to study the physiological role of Ser-ADPr signalling.


Assuntos
Drosophila , Serina , Animais , Serina/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , ADP-Ribosilação , Poli Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Mamíferos/metabolismo
9.
J Pathol ; 260(3): 261-275, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017456

RESUMO

S-nitrosoglutathione reductase (GSNOR) is a denitrosylase enzyme that has been suggested to play a tumor suppressor role, although the mechanisms responsible are still largely unclear. In this study, we show that GSNOR deficiency in tumors is associated with poor prognostic histopathological features and poor survival in patients with colorectal cancer (CRC). GSNOR-low tumors were characterized by an immunosuppressive microenvironment with exclusion of cytotoxic CD8+ T cells. Notably, GSNOR-low tumors exhibited an immune evasive proteomic signature along with an altered energy metabolism characterized by impaired oxidative phosphorylation (OXPHOS) and energetic dependence on glycolytic activity. CRISPR-Cas9-mediated generation of GSNOR gene knockout (KO) CRC cells confirmed in vitro and in vivo that GSNOR-deficiency conferred higher tumorigenic and tumor-initiating capacities. Moreover, GSNOR-KO cells possessed enhanced immune evasive properties and resistance to immunotherapy, as revealed following xenografting them into humanized mouse models. Importantly, GSNOR-KO cells were characterized by a metabolic shift from OXPHOS to glycolysis to produce energy, as indicated by increased lactate secretion, higher sensitivity to 2-deoxyglucose (2DG), and a fragmented mitochondrial network. Real-time metabolic analysis revealed that GSNOR-KO cells operated close to their maximal glycolytic rate, as a compensation for lower OXPHOS levels, explaining their higher sensitivity to 2DG. Remarkably, this higher susceptibility to glycolysis inhibition with 2DG was validated in patient-derived xenografts and organoids from clinical GSNOR-low tumors. In conclusion, our data support the idea that metabolic reprogramming induced by GSNOR deficiency is an important mechanism for tumor progression and immune evasion in CRC and that the metabolic vulnerabilities associated with the deficiency of this denitrosylase can be exploited therapeutically. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias , Oxirredutases , Camundongos , Animais , Humanos , Linfócitos T CD8-Positivos , Evasão da Resposta Imune , Proteômica , Microambiente Tumoral
10.
Front Vet Sci ; 10: 1157878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065257

RESUMO

Introduction: Liquid biopsy based on the analysis of circulating cell-free DNA (cfDNA), as well as on detection of point mutations by digital droplet PCR (ddPCR), has revolutionized the research in oncology. In recent years, this technique has been pioneering in veterinary medicine since it is a minimally invasive approach with very promising results for characterization of tumors. Methods: The aim of this study was, firstly, to analyze the concentration and the fragmentation pattern of cfDNA of dogs with mammary tumors (n = 36) and healthy dogs (n = 5) and its correlation with clinicopathological data. Secondly, analysis of TP53 gene expression and the point mutation in the codon 245 were performed in cfDNA and in tumor tissues to assess their potential as plasma biomarkers. Results and discussion: Our results highlighted that those dogs with worse clinicopathological characteristics (simple or undifferentiated carcinomas, higher histological grade and presence of peritumoral inflammation) shown higher cfDNA concentration and higher concentrations of short-fragments (<190 bp) than healthy dogs. In addition, although no detection of the point mutation in codon 245 of TP53 gene could be detected neither in plasma nor tumor tissue, an increased TP53 expression was detected in animals with tumors bearing malignant characteristics. Finally, a high concordance with TP53 gene expression in plasma and tumor tissue and cfDNA concentration was also found. The results derived from this work confirm the valuable potential of cfDNA and its fragments, as well as the analysis of TP53 expression in plasma as useful liquid biomarkers for clinical application in veterinary oncology.

11.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804826

RESUMO

The identification of factors that respond to anti-angiogenic therapy would represent a significant advance in the therapeutic management of metastatic-colorectal-cancer (mCRC) patients. We previously reported the relevance of VEGF-A and some components of the renin-angiotensin-aldosterone system (RAAS) in the response to anti-angiogenic therapy in cancer patients. Therefore, this prospective study aims to evaluate the prognostic value of basal plasma levels of VEGF-A and angiotensin-converting enzyme (ACE) in 73 mCRC patients who were to receive bevacizumab-based therapies as a first-line treatment. We found that high basal VEGF-A plasma levels were significantly associated with worse overall survival (OS) and progression-free survival (FPS). On the other hand, low ACE levels were significantly associated with poor OS. Importantly, a simple scoring system combining the basal plasma levels of VEGF-A and ACE efficiently stratified mCRC patients, according to OS, into high-risk or low-risk groups, prior to their treatment with bevacizumab. In conclusion, our study supports that VEGF-A and ACE may be potential biomarkers for selecting those mCRC patients who will most benefit from receiving chemotherapy plus bevacizumab treatment in first-line therapy. Additionally, our data reinforce the notion of a close association between the RAAS and the anti-angiogenic response in cancer.

12.
Br J Cancer ; 126(6): 874-880, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34937947

RESUMO

BACKGROUND: Aflibercept is an antiangiogenic drug against metastatic colorectal cancer (mCRC) combined with 5-fluorouracil/leucovorin/irinotecan (FOLFIRI); however, no antiangiogenic biomarker has yet been validated. We assessed aflibercept plus FOLFIRI, investigating the biomarker role of baseline vascular endothelial growth factor A (VEGF-A) and angiotensin-converting enzyme (ACE). METHODS: Phase II trial in oxaliplatin-treated mCRC patients who received aflibercept plus FOLFIRI. The reported 135 ng/mL ACE cut-off was used and ROC analysis was performed to assess the optimal VEGF-A cut-off for progression-free survival (PFS). Overall survival (OS), time to progression (TTP), time to treatment failure (TTF), overall response rate (ORR) and disease control rate (DCR) were also assessed. RESULTS: In total, 101 patients were followed for a median of 12 (6-17) months. The 1941 pg/mL VEGF-A was an optimal cut-off, with a longer median PFS when VEGF-A was <1941 versus ≥1941 pg/mL (9 versus 4 months). Patients with VEGF-A < 1941 pg/mL showed longer median OS (19 versus 8 months), TTP (9 versus 4 months) and TTF (8 versus 4 months), along with higher ORR (26% versus 9%) and DCR (81% versus 55%). No differences were identified according to ACE levels. CONCLUSIONS: This study supports aflibercept plus FOLFIRI benefits, suggesting VEGF-A as a potential biomarker to predict better outcomes.


Assuntos
Neoplasias Colorretais , Fator A de Crescimento do Endotélio Vascular , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Camptotecina/uso terapêutico , Neoplasias Colorretais/patologia , Fluoruracila/uso terapêutico , Humanos , Irinotecano/uso terapêutico , Leucovorina/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Animals (Basel) ; 11(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34359159

RESUMO

The present study evaluates the effect of olive oil-derived antioxidants, hydroxytyrosol (HT) and 3,4-dihydroxyphenylglycol (DHPG), on cryopreserved caprine sperm using Bayesian inference of ANOVA. For this proposal, sperm was collected, pooled and diluted in freezing media supplemented with different concentrations of HT, DHPG and the mixture (MIX) of both antioxidants. Sperm motility, viability, acrosome integrity, mitochondrial status, and lipid peroxidation (LPO) were assessed in fresh and frozen-thawed sperm samples. The results provided evidence that HT at low concentrations improves sperm motility and viability, and reduces the LPO. Contrastingly, DHPG and MIX exert a positive effect by reducing LPO values as concentration increases. Additionally, mitochondrial potential was reduced when samples were supplemented with HT at low concentrations and mixture of both antioxidants. Conclusively, the addition of olive oil-derived antioxidants (HT at 10 µg/mL and DHPG at 30 µg/mL) implements a protective effect in cryopreserved buck sperm. Bayesian analysis alternatives offer new possibilities to determine the repercussion of antioxidants on sperm, both quantitatively and qualitatively.

14.
Nature ; 596(7873): 597-602, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408320

RESUMO

ADP-ribosyltransferases use NAD+ to catalyse substrate ADP-ribosylation1, and thereby regulate cellular pathways or contribute to toxin-mediated pathogenicity of bacteria2-4. Reversible ADP-ribosylation has traditionally been considered a protein-specific modification5, but recent in vitro studies have suggested nucleic acids as targets6-9. Here we present evidence that specific, reversible ADP-ribosylation of DNA on thymidine bases occurs in cellulo through the DarT-DarG toxin-antitoxin system, which is found in a variety of bacteria (including global pathogens such as Mycobacterium tuberculosis, enteropathogenic Escherichia coli and Pseudomonas aeruginosa)10. We report the structure of DarT, which identifies this protein as a diverged member of the PARP family. We provide a set of high-resolution structures of this enzyme in ligand-free and pre- and post-reaction states, which reveals a specialized mechanism of catalysis that includes a key active-site arginine that extends the canonical ADP-ribosyltransferase toolkit. Comparison with PARP-HPF1, a well-established DNA repair protein ADP-ribosylation complex, offers insights into how the DarT class of ADP-ribosyltransferases evolved into specific DNA-modifying enzymes. Together, our structural and mechanistic data provide details of this PARP family member and contribute to a fundamental understanding of the ADP-ribosylation of nucleic acids. We also show that thymine-linked ADP-ribose DNA adducts reversed by DarG antitoxin (functioning as a noncanonical DNA repair factor) are used not only for targeted DNA damage to induce toxicity, but also as a signalling strategy for cellular processes. Using M. tuberculosis as an exemplar, we show that DarT-DarG regulates growth by ADP-ribosylation of DNA at the origin of chromosome replication.


Assuntos
ADP-Ribosilação , Proteínas de Bactérias/metabolismo , DNA/química , DNA/metabolismo , Timina/química , Timina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Antitoxinas , Proteínas de Bactérias/química , Toxinas Bacterianas , Sequência de Bases , Biocatálise , DNA/genética , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Modelos Moleculares , Mycobacterium/enzimologia , Mycobacterium/genética , Nitrogênio/química , Nitrogênio/metabolismo , Poli(ADP-Ribose) Polimerases/química , Origem de Replicação/genética , Especificidade por Substrato , Thermus/enzimologia , Timidina/química , Timidina/metabolismo
15.
Nat Commun ; 12(1): 4581, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321462

RESUMO

Poly(ADP-ribosyl)ation (PAR) is a versatile and complex posttranslational modification composed of repeating units of ADP-ribose arranged into linear or branched polymers. This scaffold is linked to the regulation of many of cellular processes including the DNA damage response, alteration of chromatin structure and Wnt signalling. Despite decades of research, the principles and mechanisms underlying all steps of PAR removal remain actively studied. In this work, we synthesise well-defined PAR branch point molecules and demonstrate that PARG, but not ARH3, can resolve this distinct PAR architecture. Structural analysis of ARH3 in complex with dimeric ADP-ribose as well as an ADP-ribosylated peptide reveal the molecular basis for the hydrolysis of linear and terminal ADP-ribose linkages. We find that ARH3-dependent hydrolysis requires both rearrangement of a catalytic glutamate and induction of an unusual, square-pyramidal magnesium coordination geometry.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Poli ADP Ribosilação/fisiologia , ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Animais , Catálise , Humanos , Hidrólise , Poli ADP Ribosilação/genética , Processamento de Proteína Pós-Traducional , Via de Sinalização Wnt
16.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802006

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a highly inflammatory microenvironment and liquid biopsy has emerged as a promising tool for the noninvasive analysis of this tumor. In this study, plasma was obtained from 58 metastatic PDAC patients, and neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), circulating cell-free DNA (cfDNA) concentration, and circulating RAS mutation were determined. We found that NLR was significantly associated with both overall survival (OS) and progression-free survival. Remarkably, NLR was an independent risk factor for poor OS. Moreover, NLR and PLR positively correlated, and combination of both inflammatory markers significantly improved the prognostic stratification of metastatic PDAC patients. NLR also showed a positive correlation with cfDNA levels and RAS mutant allelic fraction (MAF). Besides, we found that neutrophil activation contributed to cfDNA content in the plasma of metastatic PDAC patients. Finally, a multi-parameter prognosis model was designed by combining NLR, PLR, cfDNA levels, RAS mutation, RAS MAF, and CA19-9, which performs as a promising tool to predict the prognosis of metastatic PDAC patients. In conclusion, our study supports the idea that the use of systemic inflammatory markers along with circulating tumor-specific markers may constitute a valuable tool for the clinical management of metastatic PDAC patients.

17.
J Pers Med ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572343

RESUMO

This study represents a novel proof of concept of the clinical utility of miRNAs from exhaled breath condensate (EBC) as biomarkers of lung cancer (LC). Genome-wide miRNA profiling and machine learning analysis were performed on EBC from 21 healthy volunteers and 21 LC patients. The levels of 12 miRNAs were significantly altered in EBC from LC patients where a specific signature of miR-4507, miR-6777-5p and miR-451a distinguished these patients with high accuracy. Besides, a distinctive miRNA profile between LC adenocarcinoma and squamous cell carcinoma was observed, where a combined panel of miR-4529-3p, miR-8075 and miR-7704 enabling discrimination between them. EBC levels of miR-6777-5p, 6780a-5p and miR-877-5p predicted clinical outcome at 500 days. Two additional miRNA signatures were also associated with other clinical features such as stage and invasion status. Dysregulated EBC miRNAs showed potential target genes related to LC pathogenesis, including CDKN2B, PTEN, TP53, BCL2, KRAS and EGFR. We conclude that EBC miRNAs might allow the identification, stratification and monitorization of LC, which could lead to the development of precision medicine in this and other respiratory diseases.

18.
Lab Invest ; 101(3): 292-303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33262438

RESUMO

Cancer stem cells (CSCs) are involved in the resistance of estrogen (ER)-positive breast tumors against endocrine therapy. On the other hand, nitric oxide (NO) plays a relevant role in CSC biology, although there are no studies addressing how this important signaling molecule may contribute to resistance to antihormonal therapy in ER+ breast cancer. Therefore, we explored whether targeting NO in ER+ breast cancer cells impacts CSC subpopulation and sensitivity to hormonal therapy with tamoxifen. NO was targeted in ER+ breast cancer cells by specific NO depletion and NOS2 silencing and mammosphere formation capacity, stem cell markers and tamoxifen sensitivity were analyzed. An orthotopic breast tumor model in mice was also performed to analyze the efficacy of NO-targeted therapy plus tamoxifen. Kaplan-Meier curves were made to analyze the association of NOS2 gene expression with survival of ER+ breast cancer patients treated with tamoxifen. Our results show that targeting NO inhibited mamosphere formation, CSC markers expression and increased the antitumoral efficacy of tamoxifen in ER+ breast cancer cells, whereas tamoxifen-resistant cells displayed higher expression levels of NOS2 and Notch-1 compared with parental cells. Notably, NO-targeted therapy plus tamoxifen was more effective than either treatment alone in an orthotopic breast tumor model in immunodeficient mice. Furthermore, low NOS2 expression was significantly associated with a higher metastasis-free survival in ER+ breast cancer patients treated with tamoxifen. In conclusion, our data support that NO-targeted therapy in ER+ breast cancer may contribute to increase the efficacy of antihormonal therapy avoiding the development of resistance to these treatments.


Assuntos
Antineoplásicos Hormonais , Neoplasias da Mama , Óxido Nítrico , Receptores de Estrogênio/metabolismo , Tamoxifeno , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
19.
Front Med (Lausanne) ; 7: 264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719800

RESUMO

Tumor budding has been found to be of prognostic significance for several cancers, including colorectal cancer (CRC). Additionally, the molecular classification of CRC has led to the identification of different immune microenvironments linked to distinct prognosis and therapeutic response. However, the association between tumor budding and the different molecular subtypes of CRC and distinct immune profiles have not been fully elucidated. This study focused, firstly, on the validation of derived xenograft models (PDXs) for the evaluation of tumor budding and their human counterparts and, secondly, on the association between tumor budding and the immune tumor microenvironment by the analysis of gene expression signatures of immune checkpoints, Toll-like receptors (TLRs), and chemokine families. Clinical CRC samples with different grades of tumor budding and their corresponding PDXs were included in this study. Tumor budding grade was reliably reproduced in early passages of PDXs, and high-grade tumor budding was intimately related with a poor-prognosis CMS4 mesenchymal subtype. In addition, an upregulation of negative regulatory immune checkpoints (PDL1, TIM-3, NOX2, and IDO1), TLRs (TLR1, TLR3, TLR4, and TLR6), and chemokine receptors and ligands (CXCR2, CXCR4, CXCL1, CXCL2, CXCL6, and CXCL9) was detected in high-grade tumor budding in both human samples and their corresponding xenografts. Our data support a close link between high-grade tumor budding in CRC and a distinctive immune-suppressive microenvironment promoting tumor invasion, which may have a determinant role in the poor prognosis of the CMS4 mesenchymal subtype. In addition, our study demonstrates that PDX models may constitute a robust preclinical platform for the development of novel therapies directed against tumor budding in CRC.

20.
Cancers (Basel) ; 12(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630266

RESUMO

Liquid biopsy may assist in the management of cancer patients, which can be particularly applicable in pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated the utility of circulating cell-free DNA (cfDNA)-based markers as prognostic tools in metastatic PDAC. Plasma was obtained from 61 metastatic PDAC patients, and cfDNA levels and fragmentation were determined. BEAMing technique was used for quantitative determination of RAS mutation allele fraction (MAF) in cfDNA. We found that the prognosis was more accurately predicted by RAS mutation detection in plasma than in tissue. RAS mutation status in plasma was a strong independent prognostic factor for both overall survival (OS) and progression-free survival (PFS). Moreover, RAS MAF in cfDNA was also an independent risk factor for poor OS, and was strongly associated with primary tumours in the body/tail of the pancreas and liver metastases. Higher cfDNA levels and fragmentation were also associated with poorer OS and shorter PFS, body/tail tumors, and hepatic metastases, whereas cfDNA fragmentation positively correlated with RAS MAF. Remarkably, the combination of CA19-9 with MAF, cfDNA levels and fragmentation improved the prognostic stratification of patients. Furthermore, dynamics of RAS MAF better correlated with patients' outcome than standard CA19-9 marker. In conclusion, our study supports the use of cfDNA-based liquid biopsy markers as clinical tools for the non-invasive prognosis and monitoring of metastatic PDAC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA