Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Brain Behav Immun Health ; 38: 100757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38590761

RESUMO

Background: A bioactive myelin basic protein (MBP) fragment, comprising MBP84-104, is released in sciatic nerve after chronic constriction injury (CCI). Intraneural injection (IN) of MBP84-104 in an intact sciatic nerve is sufficient to induce persistent neuropathic pain-like behavior via robust transcriptional remodeling at the injection site and ipsilateral dorsal root ganglia (DRG) and spinal cord. The sex (female)-specific pronociceptive activity of MBP84-104 associates with sex-specific changes in cholesterol metabolism and activation of estrogen receptor (ESR)1 signaling. Methods: In male and female normal and post-CCI rat sciatic nerves, we assessed: (i) cholesterol precursor and metabolite levels by lipidomics; (ii) MBP84-104 interactors by mass spectrometry of MBP84-104 pull-down; and (iii) liver X receptor (LXR)α protein expression by immunoblotting. To test the effect of LXRα stimulation on IN MBP84-104-induced mechanical hypersensitivity, the LXRα expression was confirmed along the segmental neuraxis, in DRG and spinal cord, followed by von Frey testing of the effect of intrathecally administered synthetic LXR agonist, GW3965. In cultured male and female rat DRGs exposed to MBP84-104 and/or estrogen treatments, transcriptional effect of LXR stimulation by GW3965 was assessed on downstream cholesterol transporter Abc, interleukin (IL)-6, and pronociceptive Cacna2d1 gene expression. Results: CCI regulated LXRα ligand and receptor levels in nerves of both sexes, with cholesterol precursors, desmosterol and 7-DHC, and oxysterol elevated in females relative to males. MBP84-104 interacted with nuclear receptor coactivator (Ncoa)1, known to activate LXRα, injury-specific in nerves of both sexes. LXR stimulation suppressed ESR1-induced IL-6 and Cacna2d1 expression in cultured DRGs of both sexes and attenuated MBP84-104-induced pain in females. Conclusion: The injury-released bioactive MBP fragments induce pronociceptive changes by selective inactivation of nuclear transcription factors, including LXRα. By Ncoa1 sequestration, bioactive MBP fragments render LXRα function to counteract pronociceptive activity of estrogen/ESR1 in sensory neurons. This effect of MBP fragments is prevalent in females due to high circulating estrogen levels in females relative to males. Restoring LXR activity presents a promising therapeutic strategy in management of neuropathic pain induced by bioactive MBP.

2.
Cell Rep ; 40(13): 111415, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170811

RESUMO

Sphingolipids play important signaling and structural roles in cells. Here, we find that during de novo sphingolipid biosynthesis, a toxic metabolite is formed with critical implications for cancer cell survival. The enzyme catalyzing the first step in this pathway, serine palmitoyltransferase complex (SPT), is upregulated in breast and other cancers. SPT is dispensable for cancer cell proliferation, as sphingolipids can be salvaged from the environment. However, SPT activity introduces a liability as its product, 3-ketodihydrosphingosine (3KDS), is toxic and requires clearance via the downstream enzyme 3-ketodihydrosphingosine reductase (KDSR). In cancer cells, but not normal cells, targeting KDSR induces toxic 3KDS accumulation leading to endoplasmic reticulum (ER) dysfunction and loss of proteostasis. Furthermore, the antitumor effect of KDSR disruption can be enhanced by increasing metabolic input (via high-fat diet) to allow greater 3KDS production. Thus, de novo sphingolipid biosynthesis entails a detoxification requirement in cancer cells that can be therapeutically exploited.


Assuntos
Neoplasias , Serina C-Palmitoiltransferase , Lipogênese , Oxirredutases/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados
3.
Cell Rep ; 37(5): 109957, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731610

RESUMO

The highly lethal brain cancer glioblastoma (GBM) poses a daunting challenge because the blood-brain barrier renders potentially druggable amplified or mutated oncoproteins relatively inaccessible. Here, we identify sphingomyelin phosphodiesterase 1 (SMPD1), an enzyme that regulates the conversion of sphingomyelin to ceramide, as an actionable drug target in GBM. We show that the highly brain-penetrant antidepressant fluoxetine potently inhibits SMPD1 activity, killing GBMs, through inhibition of epidermal growth factor receptor (EGFR) signaling and via activation of lysosomal stress. Combining fluoxetine with temozolomide, a standard of care for GBM, causes massive increases in GBM cell death and complete tumor regression in mice. Incorporation of real-world evidence from electronic medical records from insurance databases reveals significantly increased survival in GBM patients treated with fluoxetine, which was not seen in patients treated with other selective serotonin reuptake inhibitor (SSRI) antidepressants. These results nominate the repurposing of fluoxetine as a potentially safe and promising therapy for patients with GBM and suggest prospective randomized clinical trials.


Assuntos
Antineoplásicos/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Reposicionamento de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Fluoxetina/farmacologia , Glioblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Registros Eletrônicos de Saúde , Receptores ErbB/metabolismo , Feminino , Fluoxetina/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos Nus , Permeabilidade , Estudos Retrospectivos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Temozolomida/farmacologia , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Metabolomics ; 15(4): 65, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004236

RESUMO

INTRODUCTION: Eicosanoids are biological lipids that serve as both activators and suppressors of inflammation. Eicosanoid pathways are implicated in synovitis and joint destruction in inflammatory arthritis, yet they might also have a protective function, underscoring the need for a comprehensive understanding of how eicosanoid pathways might be imbalanced. Until recently, sensitive and scalable methods for detecting and quantifying a high number of eicosanoids have not been available. OBJECTIVE: Here, we intend to describe a detailed eicosanoid profiling in patients with psoriatic arthritis (PsA) and evaluate correlations with parameters of disease activity. METHODS: Forty-one patients with PsA, all of whom satisfied the CASPAR classification criteria for PsA, were studied. Outcomes reflecting the activity of peripheral arthritis as well as skin psoriasis, Disease Activity Score (DAS)28, Clinical Disease Index (CDAI) and Body Surface Area (BSA) were assessed. Serum eicosanoids were determined by LC-MS, and the correlation between metabolite levels and disease scores was evaluated. RESULTS: Sixty-six eicosanoids were identified by reverse-phase LC/MS. Certain eicosanoids species including several pro-inflammatory eicosanoids such as PGE2, HXB3 or 6,15-dk,dh,PGF1a correlated with joint disease score. Several eicosapentaenoic acid (EPA)-derived eicosanoids, which associate with anti-inflammatory properties, such as 11-HEPE, 12-HEPE and 15-HEPE, correlated with DAS28 (Disease Activity Score) and CDAI (Clinical Disease Activity Index) as well. Of interest, resolvin D1, a DHA-derived anti-inflammatory eicosanoid, was down-regulated in patients with high disease activity. CONCLUSION: Both pro- and anti-inflammatory eicosanoids were associated with joint disease score, potentially representing pathways of harm as well as benefit. Further studies are needed to determine whether these eicosanoid species might also play a role in the pathogenesis of joint inflammation in PsA.


Assuntos
Artrite Psoriásica/imunologia , Artrite Psoriásica/metabolismo , Eicosanoides/análise , Adulto , Anti-Inflamatórios , Cromatografia de Fase Reversa/métodos , Eicosanoides/metabolismo , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Pele/metabolismo
5.
J Lipid Res ; 60(5): 937-952, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30862696

RESUMO

High-fat diet (HFD) causes renal lipotoxicity that is ameliorated with AMP-activated protein kinase (AMPK) activation. Although bioactive eicosanoids increase with HFD and are essential in regulation of renal disease, their role in the inflammatory response to HFD-induced kidney disease and their modulation by AMPK activation remain unexplored. In a mouse model, we explored the effects of HFD on eicosanoid synthesis and the role of AMPK activation in ameliorating these changes. We used targeted lipidomic profiling with quantitative MS to determine PUFA and eicosanoid content in kidneys, urine, and renal arterial and venous circulation. HFD increased phospholipase expression as well as the total and free pro-inflammatory arachidonic acid (AA) and anti-inflammatory DHA in kidneys. Consistent with the parent PUFA levels, the AA- and DHA-derived lipoxygenase (LOX), cytochrome P450, and nonenzymatic degradation (NE) metabolites increased in kidneys with HFD, while EPA-derived LOX and NE metabolites decreased. Conversely, treatment with 5-aminoimidazole-4-carboxamide-1-ß-D-furanosyl 5'-monophosphate (AICAR), an AMPK activator, reduced the free AA and DHA content and the DHA-derived metabolites in kidney. Interestingly, kidney and circulating AA, AA metabolites, EPA-derived LOX, and NE metabolites are increased with HFD; whereas, DHA metabolites are increased in kidney in contrast to their decreased circulating levels with HFD. Together, these changes showcase HFD-induced pro- and anti-inflammatory eicosanoid dysregulation and highlight the role of AMPK in correcting HFD-induced dysregulated eicosanoid pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica/efeitos adversos , Eicosanoides/metabolismo , Nefropatias/metabolismo , Animais , Nefropatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Lipid Res ; 59(12): 2436-2445, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30323111

RESUMO

Eicosanoids and related metabolites (oxylipins) possess potent signaling properties, elicit numerous important physiologic responses, and serve as biomarkers of disease. In addition to their presence in free form, a considerable portion of these bioactive lipids is esterified to complex lipids in cell membranes and plasma lipoproteins. We developed a rapid and sensitive method for the analysis of esterified oxylipins using alkaline hydrolysis to release them followed by ultra-performance LC coupled with mass spectrometric analysis. Detailed evaluation of the data revealed that several oxylipins are susceptible to alkaline-induced degradation. Nevertheless, of the 136 metabolites we examined, 56 were reproducibly recovered after alkaline hydrolysis. We classified those metabolites that were resistant to alkaline-induced degradation and applied this methodology to quantify metabolite levels in a macrophage cell model and in plasma of healthy subjects. After alkaline hydrolysis of lipids, 34 metabolites could be detected and quantified in resting and activated macrophages, and 38 metabolites were recovered from human plasma at levels that were substantially greater than in free form. By carefully selecting internal standards and taking the observed experimental limitations into account, we established a robust method that can be reliably employed for the measurement of esterified oxylipins in biological samples.


Assuntos
Eicosanoides/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Hidrólise , Macrófagos/metabolismo , Camundongos , Oxilipinas/metabolismo , Células RAW 264.7 , Espectrometria de Massas em Tandem
7.
Cancer Cell ; 30(5): 683-693, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27746144

RESUMO

Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers, potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach, particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival, rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623, a clinically viable, highly brain-penetrant LXRα-partial/LXRß-full agonist selectively kills GBM cells in an LXRß- and cholesterol-dependent fashion, causing tumor regression and prolonged survival in mouse models. Thus, a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Colesterol/metabolismo , Glioblastoma/tratamento farmacológico , Indazóis/administração & dosagem , Receptores X do Fígado/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glioblastoma/metabolismo , Humanos , Indazóis/farmacologia , Camundongos , Resultado do Tratamento
8.
Aging (Albany NY) ; 7(11): 937-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26564964

RESUMO

Because age is the greatest risk factor for sporadic Alzheimer's disease (AD), phenotypic screens based upon old age-associated brain toxicities were used to develop the potent neurotrophic drug J147. Since certain aspects of aging may be primary cause of AD, we hypothesized that J147 would be effective against AD-associated pathology in rapidly aging SAMP8 mice and could be used to identify some of the molecular contributions of aging to AD. An inclusive and integrative multiomics approach was used to investigate protein and gene expression, metabolite levels, and cognition in old and young SAMP8 mice. J147 reduced cognitive deficits in old SAMP8 mice, while restoring multiple molecular markers associated with human AD, vascular pathology, impaired synaptic function, and inflammation to those approaching the young phenotype. The extensive assays used in this study identified a subset of molecular changes associated with aging that may be necessary for the development of AD.


Assuntos
Envelhecimento , Doença de Alzheimer/etiologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/análise , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica , Eicosanoides/metabolismo , Glutationa/metabolismo , Hipocampo/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Metabolômica , Camundongos , Transcriptoma
9.
J Lipid Res ; 56(3): 722-736, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25598080

RESUMO

The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. Recognition and timely diagnosis of these different stages, particularly NASH, is important for both potential reversibility and limitation of complications. Liver biopsy remains the clinical standard for definitive diagnosis. Diagnostic tools minimizing the need for invasive procedures or that add information to histologic data are important in novel management strategies for the growing epidemic of NAFLD. We describe an "omics" approach to detecting a reproducible signature of lipid metabolites, aqueous intracellular metabolites, SNPs, and mRNA transcripts in a double-blinded study of patients with different stages of NAFLD that involves profiling liver biopsies, plasma, and urine samples. Using linear discriminant analysis, a panel of 20 plasma metabolites that includes glycerophospholipids, sphingolipids, sterols, and various aqueous small molecular weight components involved in cellular metabolic pathways, can be used to differentiate between NASH and steatosis. This identification of differential biomolecular signatures has the potential to improve clinical diagnosis and facilitate therapeutic intervention of NAFLD.


Assuntos
Lipídeos/sangue , Lipídeos/urina , Hepatopatia Gordurosa não Alcoólica , Polimorfismo de Nucleotídeo Único , Adulto , Biomarcadores/metabolismo , Biomarcadores/urina , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/urina
10.
J Lipid Res ; 56(1): 185-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25404585

RESUMO

Lipotoxicity is a key mechanism thought to be responsible for the progression of nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). Noninvasive diagnosis of NASH is a major unmet clinical need, and we hypothesized that PUFA metabolites, in particular arachidonic acid (AA)-derived eicosanoids, in plasma would differentiate patients with NAFL from those with NASH. Therefore, we aimed to assess the differences in the plasma eicosanoid lipidomic profile between patients with biopsy-proven NAFL versus NASH versus normal controls without nonalcoholic fatty liver disease (NAFLD; based on MRI fat fraction <5%). We carried out a cross-sectional analysis of a prospective nested case-control study including 10 patients with biopsy-proven NAFL, 9 patients with biopsy-proven NASH, and 10 non-NAFLD MRI-phenotyped normal controls. We quantitatively compared plasma eicosanoid and other PUFA metabolite levels between NAFL versus NASH versus normal controls. Utilizing a uniquely well-characterized cohort, we demonstrated that plasma eicosanoid and other PUFA metabolite profiling can differentiate between NAFL and NASH. The top candidate as a single biomarker for differentiating NAFL from NASH was 11,12-dihydroxy-eicosatrienoic acid (11,12-diHETrE) with an area under the receiver operating characteristic curve (AUROC) of 1. In addition, we also found a panel including 13,14-dihydro-15-keto prostaglandin D2 (dhk PGD2) and 20-carboxy arachidonic acid (20-COOH AA) that demonstrated an AUROC of 1. This proof-of-concept study provides early evidence that 11,12-diHETrE, dhk PGD2, and 20-COOH AA are the leading eicosanoid candidate biomarkers for the noninvasive diagnosis of NASH.


Assuntos
Eicosanoides/metabolismo , Metabolômica , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Eicosanoides/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Fenótipo
11.
Nat Med ; 20(8): 942-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997608

RESUMO

It is well known that the ω-3 fatty acids (ω-3-FAs; also known as n-3 fatty acids) can exert potent anti-inflammatory effects. Commonly consumed as fish products, dietary supplements and pharmaceuticals, ω-3-FAs have a number of health benefits ascribed to them, including reduced plasma triglyceride levels, amelioration of atherosclerosis and increased insulin sensitivity. We reported that Gpr120 is the functional receptor for these fatty acids and that ω-3-FAs produce robust anti-inflammatory, insulin-sensitizing effects, both in vivo and in vitro, in a Gpr120-dependent manner. Indeed, genetic variants that predispose to obesity and diabetes have been described in the gene encoding GPR120 in humans (FFAR4). However, the amount of fish oils that would have to be consumed to sustain chronic agonism of Gpr120 is too high to be practical, and, thus, a high-affinity small-molecule Gpr120 agonist would be of potential clinical benefit. Accordingly, Gpr120 is a widely studied drug discovery target within the pharmaceutical industry. Gpr40 is another lipid-sensing G protein-coupled receptor, and it has been difficult to identify compounds with a high degree of selectivity for Gpr120 over Gpr40 (ref. 11). Here we report that a selective high-affinity, orally available, small-molecule Gpr120 agonist (cpdA) exerts potent anti-inflammatory effects on macrophages in vitro and in obese mice in vivo. Gpr120 agonist treatment of high-fat diet-fed obese mice causes improved glucose tolerance, decreased hyperinsulinemia, increased insulin sensitivity and decreased hepatic steatosis. This suggests that Gpr120 agonists could become new insulin-sensitizing drugs for the treatment of type 2 diabetes and other human insulin-resistant states in the future.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos Ômega-3/metabolismo , Resistência à Insulina/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Arginase/biossíntese , Linfócitos B Reguladores/imunologia , Sequência de Bases , Diabetes Mellitus Tipo 2/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Fígado Gorduroso/tratamento farmacológico , Hiperinsulinismo/tratamento farmacológico , Inflamação , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Dados de Sequência Molecular , Óxido Nítrico Sintase Tipo II/biossíntese , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T Reguladores/imunologia
12.
Biophys J ; 106(4): 966-75, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24559999

RESUMO

Eicosanoids, including prostaglandins (PG) and leukotrienes, are lipid mediators derived from arachidonic acid. A quantitative and biochemical level understanding of eicosanoid metabolism would aid in understanding the mechanisms that govern inflammatory processes. Here, we present a combined experimental and computational approach to understanding the biochemical basis of eicosanoid metabolism in macrophages. Lipidomic and transcriptomic measurements and analyses reveal temporal and dynamic changes of the eicosanoid metabolic network in mouse bone marrow-derived macrophages (BMDM) upon stimulation of the Toll-like receptor 4 with Kdo2-Lipid A (KLA) and stimulation of the P2X7 purinergic receptor with adenosine 5'-triphosphate. Kinetic models were developed for the cyclooxygenase (COX) and lipoxygenase branches of arachidonic acid metabolism, and then the rate constants were estimated with a data set from ATP-stimulated BMDM, using a two-step matrix-based approach employing a constrained least-squares method followed by nonlinear optimization. The robustness of the model was validated through parametric sensitivity, uncertainty analysis, and predicting an independent dataset from KLA-primed ATP-stimulated BMDM by allowing the parameters to vary within the uncertainty range of the calculated parameters. We analyzed the functional coupling between COX isozymes and terminal enzymes by developing a PGH2-divided model. This provided evidence for the functional coupling between COX-2 and PGE2 synthase, between COX-1/COX-2 and PGD2 synthase, and also between COX-1 and thromboxane A2 synthase. Further, these functional couplings were experimentally validated using COX-1 and COX-2 selective inhibitors. The resulting fluxomics analysis demonstrates that the "multi-omics" systems biology approach can define the complex machinery of eicosanoid networks.


Assuntos
Eicosanoides/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Lipoxigenase/metabolismo , Modelos Biológicos , Prostaglandina-Endoperóxido Sintases/metabolismo , Tromboxano-A Sintase/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Inibidores de Ciclo-Oxigenase 2/farmacologia , Cinética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
PLoS One ; 8(12): e83145, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376657

RESUMO

Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography - tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis.


Assuntos
Colesterol/análogos & derivados , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Placa Aterosclerótica/genética , Proteínas Tirosina Quinases/genética , Receptor 4 Toll-Like/genética , Animais , Transporte Biológico , Linhagem Celular , Colesterol/química , Colesterol/isolamento & purificação , Colesterol/farmacologia , LDL-Colesterol/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipoproteínas LDL/química , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxirredução , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Cultura Primária de Células , Multimerização Proteica , Proteínas Tirosina Quinases/deficiência , Transdução de Sinais , Quinase Syk , Receptor 4 Toll-Like/deficiência
14.
Cell ; 155(1): 200-214, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074869

RESUMO

Macrophage-mediated inflammation is a major contributor to obesity-associated insulin resistance. The corepressor NCoR interacts with inflammatory pathway genes in macrophages, suggesting that its removal would result in increased activity of inflammatory responses. Surprisingly, we find that macrophage-specific deletion of NCoR instead results in an anti-inflammatory phenotype along with robust systemic insulin sensitization in obese mice. We present evidence that derepression of LXRs contributes to this paradoxical anti-inflammatory phenotype by causing increased expression of genes that direct biosynthesis of palmitoleic acid and ω3 fatty acids. Remarkably, the increased ω3 fatty acid levels primarily inhibit NF-κB-dependent inflammatory responses by uncoupling NF-κB binding and enhancer/promoter histone acetylation from subsequent steps required for proinflammatory gene activation. This provides a mechanism for the in vivo anti-inflammatory insulin-sensitive phenotype observed in mice with macrophage-specific deletion of NCoR. Therapeutic methods to harness this mechanism could lead to a new approach to insulin-sensitizing therapies.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Receptores Nucleares Órfãos/genética , Animais , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/genética
15.
Mol Cell Proteomics ; 11(7): M111.014746, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22361236

RESUMO

Eicosanoids constitute a diverse class of bioactive lipid mediators that are produced from arachidonic acid and play critical roles in cell signaling and inflammatory aspects of numerous diseases. We have previously quantified eicosanoid metabolite production in RAW264.7 macrophage cells in response to Toll-like receptor 4 signaling and analyzed the levels of transcripts coding for the enzymes involved in the eicosanoid metabolite biosynthetic pathways. We now report the quantification of changes in protein levels under similar experimental conditions in RAW264.7 macrophages by multiple reaction monitoring mass spectrometry, an accurate targeted protein quantification method. The data complete the first fully integrated genomic, proteomic, and metabolomic analysis of the eicosanoid biochemical pathway.


Assuntos
Ácido Araquidônico/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Eicosanoides/biossíntese , Inflamação/metabolismo , Macrófagos/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular , Inflamação/induzido quimicamente , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Espectrometria de Massas , Metabolômica , Camundongos , Proteômica , Transdução de Sinais/efeitos dos fármacos
16.
Biochim Biophys Acta ; 1811(11): 648-56, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21787881

RESUMO

Historically considered to be simple membrane components serving as structural elements and energy storing entities, fatty acids are now increasingly recognized as potent signaling molecules involved in many metabolic processes. Quantitative determination of fatty acids and exploration of fatty acid profiles have become common place in lipid analysis. We present here a reliable and sensitive method for comprehensive analysis of free fatty acids and fatty acid composition of complex lipids in biological material. The separation and quantitation of fatty acids are achieved by capillary gas chromatography. The analytical method uses pentafluorobenzyl bromide derivatization and negative chemical ionization gas chromatography-mass spectrometry. The chromatographic procedure provides base line separation between saturated and unsaturated fatty acids of different chain lengths as well as between most positional isomers. Fatty acids are extracted in the presence of isotope-labeled internal standards for high quantitation accuracy. Mass spectrometer conditions are optimized for broad detection capacity and sensitivity capable of measuring trace amounts of fatty acids in complex biological samples. .


Assuntos
Métodos Analíticos de Preparação de Amostras , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolismo dos Lipídeos , Métodos Analíticos de Preparação de Amostras/normas , Animais , Ácidos Graxos/sangue , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas/normas , Humanos , Padrões de Referência
17.
Biochim Biophys Acta ; 1791(10): 975-82, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19230851

RESUMO

Group IVA phospholipase A(2) (GIVA PLA(2)) catalyzes the release of arachidonic acid (AA) from the sn-2 position of glycerophospholipids. AA is then further metabolized into terminal signaling molecules including numerous prostaglandins. We have now demonstrated the involvement of phosphatidic acid phosphohydrolase 1 (PAP-1) and protein kinase C (PKC) in the Toll-like receptor-4 (TLR-4) activation of GIVA PLA(2). We also studied the effect of PAP-1 and PKC on Ca+2 induced and synergy enhanced GIVA PLA(2) activation. We observed that the AA release induced by exposure of RAW 264.7 macrophages to the TLR-4 specific agonist Kdo(2)-Lipid A is blocked by the PAP-1 inhibitors bromoenol lactone (BEL) and propranolol as well as the PKC inhibitor Ro 31-8220; however these inhibitors did not reduce AA release stimulated by Ca+2 influx induced by the P2X7 purinergic receptor agonist ATP. Additionally, stimulation of cells with diacylglycerol (DAG), the product of PAP-1 mediated hydrolysis, initiated AA release from unstimulated cells as well as restored normal AA release from cells treated with PAP-1 inhibitors. Finally, neither PAP-1 nor PKC inhibition reduced GIVA PLA(2) synergistic activation by stimulation with Kdo(2)-Lipid A and ATP.


Assuntos
Fosfolipases A2 do Grupo IV/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteína Quinase C/metabolismo , Receptor 4 Toll-Like/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Ácido Araquidônico/metabolismo , Diglicerídeos/farmacologia , Sinergismo Farmacológico , Ácido Edético/farmacologia , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , Naftalenos/farmacologia , Proteínas Associadas a Pancreatite , Propranolol/farmacologia , Proteína Quinase C/antagonistas & inibidores , Pironas/farmacologia , Fatores de Tempo
18.
Artigo em Inglês | MEDLINE | ID: mdl-18996688

RESUMO

The Lipid Metabolites and Pathway Strategy (LIPID MAPS) Consortium is a nationwide initiative that has taken on the task of employing lipidomics to advance our understanding of lipid metabolism at the molecular and mechanistic level in living organisms. An important step toward this goal is to craft enabling analytical procedures to comprehensively measure all lipid species, to establish the precise structural identity of the lipid molecules analyzed, and to generate accurate quantitative information. The LIPID MAPS Consortium has succeeded in the implementation of a complete infrastructure that now provides tools for analysis of the global lipidome in cultured and primary cells. Here we illustrate the advancement of a gas chromatography mass spectrometry (GC/MS) procedure for the analysis of essential fatty acids in RAW 264.7 cells. Our method allows for the specific identification and quantification of over 30 fatty acids present in cells in their free form in a single analytical GC/MS run. Free fatty acids are selectively extracted in the presence of deuterated internal standards, which permit subsequent estimation of extraction efficiencies and quantification with high accuracy. Mass spectrometer conditions were optimized for single-ion monitoring, which provides an extremely sensitive technology to measure fatty acids from biological samples in trace amounts. These methods will be presented in the context of our broader effort to analyze all fatty acids as well as their metabolites in inflammatory cells.


Assuntos
Ácidos Graxos Essenciais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Macrófagos/química , Animais , Linhagem Celular Tumoral , Camundongos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA