Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 46, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454512

RESUMO

BACKGROUND: By analyzing the proteins which are the workhorses of biological systems, metaproteomics allows us to list the taxa present in any microbiota, monitor their relative biomass, and characterize the functioning of complex biological systems. RESULTS: Here, we present a new strategy for rapidly determining the microbial community structure of a given sample and designing a customized protein sequence database to optimally exploit extensive tandem mass spectrometry data. This approach leverages the capabilities of the first generation of Quadrupole Orbitrap mass spectrometer incorporating an asymmetric track lossless (Astral) analyzer, offering rapid MS/MS scan speed and sensitivity. We took advantage of data-dependent acquisition and data-independent acquisition strategies using a peptide extract from a human fecal sample spiked with precise amounts of peptides from two reference bacteria. CONCLUSIONS: Our approach, which combines both acquisition methods, proves to be time-efficient while processing extensive generic databases and massive datasets, achieving a coverage of more than 122,000 unique peptides and 38,000 protein groups within a 30-min DIA run. This marks a significant departure from current state-of-the-art metaproteomics methodologies, resulting in broader coverage of the metabolic pathways governing the biological system. In combination, our strategy and the Astral mass analyzer represent a quantum leap in the functional analysis of microbiomes. Video Abstract.


Assuntos
Microbiota , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Peptídeos , Bases de Dados de Proteínas
2.
Biomolecules ; 14(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540800

RESUMO

This study aims at identifying molecular biomarkers differentiating responders and non-responders to treatment with Tumor Necrosis Factor inhibitors (TNFi) among patients with axial spondyloarthritis (axSpA). Whole blood mRNA and plasma proteins were measured in a cohort of biologic-naïve axSpA patients (n = 35), pre and post (14 weeks) TNFi treatment with adalimumab. Differential expression analysis was used to identify the most enriched pathways and in predictive models to distinguish responses to TNFi. A treatment-associated signature suggests a reduction in inflammatory activity. We found transcripts and proteins robustly differentially expressed between baseline and week 14 in responders. C-reactive protein (CRP) and Haptoglobin (HP) proteins showed strong and early decrease in the plasma of axSpA patients, while a cluster of apolipoproteins (APOD, APOA2, APOA1) showed increased expression at week 14. Responders to TNFi treatment present higher levels of markers of innate immunity at baseline, and lower levels of adaptive immunity markers, particularly B-cells. A logistic regression model incorporating ASDAS-CRP, gender, and AFF3, the top differentially expressed gene at baseline, enabled an accurate prediction of response to adalimumab in our cohort (AUC = 0.97). In conclusion, innate and adaptive immune cell type composition at baseline may be a major contributor to response to adalimumab in axSpA patients. A model including clinical and gene expression variables should also be considered.


Assuntos
Antirreumáticos , Espondiloartrite Axial , Espondilite Anquilosante , Humanos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Adalimumab/uso terapêutico , Antirreumáticos/uso terapêutico , Fator de Necrose Tumoral alfa , Resultado do Tratamento
3.
Appl Environ Microbiol ; 90(3): e0193123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376171

RESUMO

White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.


Assuntos
Basidiomycota , Peróxido de Hidrogênio , Polyporaceae , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Madeira/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Basidiomycota/metabolismo , Oxirredução , Celulose 1,4-beta-Celobiosidase/metabolismo , Carboidratos , Metionina/metabolismo , Sulfonas/metabolismo
4.
Ecotoxicol Environ Saf ; 270: 115808, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198896

RESUMO

Despite various plans to rationalize antibiotic use, antibiotic resistance in environmental bacteria is increasing due to the accumulation of antibiotic residues in the environment. This study aimed to test the ability of basidiomycete fungal strains to biotransform the antibiotic levofloxacin, a widely-used third-generation broad-spectrum fluoroquinolone, and to propose enzyme targets potentially involved in this biotransformation. The biotransformation process was performed using fungal strains. Levofloxacin biotransformation reached 100% after 9 days of culture with Porostereum spadiceum BS34. Using genomics and proteomics analyses coupled with activity tests, we showed that P. spadiceum produces several heme-peroxidases together with H2O2-producing enzymes that could be involved in the antibiotic biotransformation process. Using UV and high-resolution mass spectrometry, we were able to detect five levofloxacin degradation products. Their putative identity based on their MS2 fragmentation patterns led to the conclusion that the piperazine moiety was the main target of oxidative modification of levofloxacin by P. spadiceum, leading to a decrease in antibiotic activity.


Assuntos
Peróxido de Hidrogênio , Levofloxacino , Polyporales , Antibacterianos/química , Fluoroquinolonas/química , Fungos/metabolismo
5.
Sci Rep ; 13(1): 11586, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463979

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.


Assuntos
Basidiomycota , Cobre , Filogenia , Cobre/metabolismo , Proteômica , Polissacarídeos/metabolismo , Celulose/metabolismo , Basidiomycota/metabolismo , Fosfatos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
6.
Proteomics ; 23(2): e2200253, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969374

RESUMO

The recent and sudden outbreak of monkeypox in numerous non-endemic countries requires expanding its surveillance immediately and understanding its origin and spread. As learned from the COVID-19 pandemic, appropriate detection techniques are crucial to achieving such a goal. Mass spectrometry has the advantages of a rapid response, low analytical interferences, better precision, and easier multiplexing to detect various pathogens and their variants. In this proteomic dataset, we report experimental data on the proteome of the monkeypox virus (MPXV) recorded by state-of-the-art shotgun proteomics, including data-dependent and data-independent acquisition for comprehensive coverage. We highlighted 152 viral proteins, corresponding to an overall proteome coverage of 79.5 %. Among the 1371 viral peptides detected, 35 peptides with the most intense signals in mass spectrometry were selected, representing a subset of 13 viral proteins. Their relevance as potential candidate markers for virus detection by targeted mass spectrometry is discussed. This report should assist the rapid development of mass spectrometry-based tests to detect a pathogen of increasing concern.


Assuntos
Monkeypox virus , Mpox , Humanos , Espectrometria de Massas/métodos , Monkeypox virus/isolamento & purificação , Peptídeos/análise , Proteoma , Proteômica/métodos , Proteínas Virais/química , Mpox/diagnóstico
7.
Viruses ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36298760

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in a major health crisis worldwide with its continuously emerging new strains, resulting in new viral variants that drive "waves" of infection. PCR or antigen detection assays have been routinely used to detect clinical infections; however, the emergence of these newer strains has presented challenges in detection. One of the alternatives has been to detect and characterize variant-specific peptide sequences from viral proteins using mass spectrometry (MS)-based methods. MS methods can potentially help in both diagnostics and vaccine development by understanding the dynamic changes in the viral proteome associated with specific strains and infection waves. In this study, we developed an accessible, flexible, and shareable bioinformatics workflow that was implemented in the Galaxy Platform to detect variant-specific peptide sequences from MS data derived from the clinical samples. We demonstrated the utility of the workflow by characterizing published clinical data from across the world during various pandemic waves. Our analysis identified six SARS-CoV-2 variant-specific peptides suitable for confident detection by MS in commonly collected clinical samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Proteoma , Peptídeos , Proteínas Virais/genética
8.
Front Microbiol ; 13: 975883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312921

RESUMO

Microorganisms proteotyping by tandem mass spectrometry has been recently shown as a powerful methodology to identify the wide-range taxonomy and biomass of microbiota. Sputum is the recommended specimen for routine microbiological monitoring of Cystic Fibrosis (CF) patients but has been rarely submitted to tandem mass spectrometry-based proteotyping. In this study, we compared the microbial components of spontaneous and induced sputum samples from three cystic fibrosis patients. Although the presence of microbial proteins is much lower than host proteins, we report that the microbiota's components present in the samples can be identified, as well as host biomarkers and functional insights into the microbiota. No significant difference was found in microorganism abundance between paired spontaneous and induced sputum samples. Microbial proteins linked to resistance, iron uptake, and biofilm-forming ability were observed in sputa independently of the sampling method. This unbiased and enlarged view of the CF microbiome could be highly complementary to culture and relevant for the clinical management of CF patients by improving knowledge about the host-pathogen dynamics and CF pathophysiology.

9.
Methods Mol Biol ; 2452: 167-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35554907

RESUMO

A comprehensive cartography of viral and host proteins expressed during the different stages of SARS-CoV-2 infection is key to decipher the molecular mechanisms of pathogenesis. For the most detailed analysis, proteins should be first purified and then proteolyzed with trypsin in the presence of detergents. The resulting peptide mixtures are resolved by reverse phase ultrahigh pressure liquid chromatography and then identified by a high-resolution tandem mass spectrometer. The thousands of spectra acquired for each fraction can then be assigned to peptide sequences using a relevant protein sequence database, comprising viral and host proteins and potential contaminants from the growth medium or from the operator. The peptides are evidencing proteins and their intensities are used to infer the abundance of their corresponding proteins. Data analysis allows for highlighting the viral and host proteins dynamics. Here, we describe the sample preparation method adapted to profile SARS-CoV-2 -infected cell models, the shotgun proteomics pipeline to record experimental data, and the workflow for data interpretation to analyze infection-induced proteomic changes in a time-resolved manner.


Assuntos
COVID-19 , Proteômica , Humanos , Peptídeos , Proteômica/métodos , SARS-CoV-2 , Espectrometria de Massas em Tandem
11.
ISME J ; 16(3): 705-716, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34556817

RESUMO

Uranium is a naturally occurring radionuclide. Its redistribution, primarily due to human activities, can have adverse effects on human and non-human biota, which poses environmental concerns. The molecular mechanisms of uranium tolerance and the cellular response induced by uranium exposure in bacteria are not yet fully understood. Here, we carried out a comparative analysis of four actinobacterial strains isolated from metal and radionuclide-rich soils that display contrasted uranium tolerance phenotypes. Comparative proteogenomics showed that uranyl exposure affects 39-47% of the total proteins, with an impact on phosphate and iron metabolisms and membrane proteins. This approach highlighted a protein of unknown function, named UipA, that is specific to the uranium-tolerant strains and that had the highest positive fold-change upon uranium exposure. UipA is a single-pass transmembrane protein and its large C-terminal soluble domain displayed a specific, nanomolar binding affinity for UO22+ and Fe3+. ATR-FTIR and XAS-spectroscopy showed that mono and bidentate carboxylate groups of the protein coordinated both metals. The crystal structure of UipA, solved in its apo state and bound to uranium, revealed a tandem of PepSY domains in a swapped dimer, with a negatively charged face where uranium is bound through a set of conserved residues. This work reveals the importance of UipA and its PepSY domains in metal binding and radionuclide tolerance.


Assuntos
Urânio , Bactérias/genética , Bactérias/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro , Solo
12.
Nat Commun ; 12(1): 7305, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911965

RESUMO

Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.


Assuntos
Bactérias/genética , Proteínas de Bactérias/química , Fezes/microbiologia , Proteômica/métodos , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Feminino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiologia , Laboratórios , Espectrometria de Massas , Peptídeos/química , Fluxo de Trabalho
13.
BMC Genomics ; 22(1): 648, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493209

RESUMO

BACKGROUND: Bacillus cereus is a notorious foodborne pathogen, which can grow under anoxic conditions. Anoxic growth is supported by endogenous redox metabolism, for which the thiol redox proteome serves as an interface. Here, we studied the cysteine (Cys) proteome dynamics of B. cereus ATCC 14579 cells grown under fermentative anoxic conditions. We used a quantitative thiol trapping method combined with proteomics profiling. RESULTS: In total, we identified 153 reactive Cys residues in 117 proteins participating in various cellular processes and metabolic pathways, including translation, carbohydrate metabolism, and stress response. Of these reactive Cys, 72 were detected as reduced Cys. The B. cereus Cys proteome evolved during growth both in terms of the number of reduced Cys and the Cys-containing proteins identified, reflecting its growth-phase-dependence. Interestingly, the reduced status of the B. cereus thiol proteome increased during growth, concomitantly to the decrease of extracellular oxidoreduction potential. CONCLUSIONS: Taken together, our data show that the B. cereus Cys proteome during unstressed fermentative anaerobic growth is a dynamic entity and provide an important foundation for future redox proteomic studies in B. cereus and other organisms.


Assuntos
Bacillus cereus , Proteoma , Anaerobiose , Oxirredução , Proteoma/metabolismo , Proteômica , Compostos de Sulfidrila
14.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360718

RESUMO

Besides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells. The conditioned medium was directly analyzed by mass spectrometry in order to identify candidate bystander factors involved in the signal transmission. The proteomic analysis of the bystander chondrocytes highlighted 20 proteins spots that were significantly modified at low dose, implicating several cellular mechanisms, such as oxidative stress responses, cellular motility, and exosomes pathways. In addition, the secretomic analysis revealed that the abundance of 40 proteins in the conditioned medium of 0.1 Gy irradiated chondrosarcoma cells was significantly modified, as compared with the conditioned medium of non-irradiated cells. A large cluster of proteins involved in stress granules and several proteins involved in the cellular response to DNA damage stimuli were increased in the 0.1 Gy condition. Several of these candidates and cellular mechanisms were confirmed by functional analysis, such as 8-oxodG quantification, western blot, and wound-healing migration tests. Taken together, these results shed new lights on the complexity of the radiation-induced bystander effects and the large variety of the cellular and molecular mechanisms involved, including the identification of a new potential actor, namely the stress granules.


Assuntos
Neoplasias Ósseas/metabolismo , Efeito Espectador/efeitos da radiação , Condrócitos/metabolismo , Condrossarcoma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteômica , Raios X , Neoplasias Ósseas/radioterapia , Linhagem Celular Tumoral , Condrossarcoma/radioterapia , Humanos
15.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299167

RESUMO

At the end of exponential growth, aerobic bacteria have to cope with the accumulation of endogenous reactive oxygen species (ROS). One of the main targets of these ROS is cysteine residues in proteins. This study uses liquid chromatography coupled to high-resolution tandem mass spectrometry to detect significant changes in protein abundance and thiol status for cysteine-containing proteins from Bacillus cereus during aerobic exponential growth. The proteomic profiles of cultures at early-, middle-, and late-exponential growth phases reveals that (i) enrichment in proteins dedicated to fighting ROS as growth progressed, (ii) a decrease in both overall proteome cysteine content and thiol proteome redox status, and (iii) changes to the reduced thiol status of some key proteins, such as the transition state transcriptional regulator AbrB. Taken together, our data indicate that growth under oxic conditions requires increased allocation of protein resources to attenuate the negative effects of ROS. Our data also provide a strong basis to understand the response mechanisms used by B. cereus to deal with endogenous oxidative stress.


Assuntos
Bacillus cereus/metabolismo , Cisteína/análise , Cisteína/metabolismo , Estresse Oxidativo , Proteoma/análise , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bacillus cereus/crescimento & desenvolvimento , Oxirredução , Proteômica/métodos
16.
Genes (Basel) ; 12(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207804

RESUMO

Cystic fibrosis (CF) is a hereditary disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, triggering dysfunction of the anion channel in several organs including the lung and gut. The main cause of morbidity and mortality is chronic infection. The microbiota is now included among the additional factors that could contribute to the exacerbation of patient symptoms, to treatment outcome, and more generally to the phenotypic variability observed in CF patients. In recent years, various omics tools have started to shed new light on microbial communities associated with CF and host-microbiota interactions. In this context, proteomics targets the key effectors of the responses from organisms, and thus their phenotypes. Recent advances are promising in terms of gaining insights into the CF microbiota and its relation with the host. This review provides an overview of the contributions made by proteomics and metaproteomics to our knowledge of the complex host-microbiota partnership in CF. Considering the strengths and weaknesses of proteomics-based approaches in profiling the microbiota in the context of other diseases, we illustrate their potential and discuss possible strategies to overcome their limitations in monitoring both the respiratory and intestinal microbiota in sample from patients with CF.


Assuntos
Fibrose Cística/microbiologia , Interações Hospedeiro-Patógeno , Metagenômica/métodos , Microbiota , Proteômica/métodos , Animais , Fibrose Cística/metabolismo , Humanos , Proteoma/genética , Proteoma/metabolismo
17.
Aquat Toxicol ; 235: 105816, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33838495

RESUMO

Omics approaches are continuously providing new clues on the mechanisms of action of contaminants in species of environmental relevance, contributing to the emergence of molecular ecotoxicology. Co-expression network approaches represent a suitable methodological framework for studying the rich content of omics datasets. This study aimed to find evidence of key pathways and proteins related to the testicular toxicity in the sentinel crustacean species Gammarus fossarum exposed to endocrine disruptors using a weighted protein co-expression network analysis. From a shotgun proteomics dataset of male gonads of G. fossarum organisms exposed to cadmium (Cd), pyriproxyfen (Pyr) and methoxyfenozide (Met) in laboratory conditions, four distinct modules were identified as significantly correlated to contaminants' exposure. Protein set enrichment analysis identified modules involved in cytoskeleton organization and oxidative stress response associated with the Cd exposure. The module associated with Pyr exposure was associated with endoplasmic reticulum stress (ER) response, and the module correlated with Met exposure was characterized by a significant proportion of amphipod-restricted proteins whose functions are still not characterized. Our results show that co-expression networks are efficient and adapted tools to identify new potential mode of actions from environmental sentinel species, such as G. fossarum, using a proteogenomic approach, even without an annotated genome.


Assuntos
Anfípodes/fisiologia , Cádmio/toxicidade , Piridinas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/metabolismo , Animais , Ecotoxicologia/métodos , Disruptores Endócrinos/toxicidade , Genoma , Hidrazinas , Hormônios Juvenis , Masculino , Proteômica/métodos , Espécies Sentinelas/genética , Testículo/efeitos dos fármacos
18.
Genomics ; 113(1 Pt 1): 317-330, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279651

RESUMO

A new strain belonging to the genus Kocuria, designed PT10, was isolated from irradiated roots of the xerophyte Panicum turgidum. Isolate PT10 is a Gram-positive, coccoid, aerobic and ionizing-radiation (IR)-resistant actinobacterium. PT10 has shown an ability to survive under extreme conditions, such as gamma irradiation, desiccation and high concentration of hydrogen peroxide. Phenotypic, chemotaxonomic and comparative genome analyses support the assignment of strain PT10 (LMG 31102 = DSM 108617) as Kocuria rhizophila. The complete genome sequence of PT10 consists of one chromosome (2,656,287 bps), with a 70.7% G + C content and comprises 2481 protein-coding sequences. A total of 1487 proteins were identified by LC-MS/MS profiling. In silico analyses revealed that the proteome of the oxidation-tolerant PT10 possesses several features explaining its IR-resistant phenotype and many adaptive pathways implicated in response to environmental pressures - desiccation, cold, reactive oxygen species and other stressors.


Assuntos
Genes Bacterianos , Micrococcaceae/genética , Panicum/microbiologia , Tolerância a Radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dessecação , Raios gama , Micrococcaceae/patogenicidade , Micrococcaceae/efeitos da radiação , Estresse Oxidativo
19.
Sci Signal ; 13(639)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636307

RESUMO

Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-ß (TGF-ß), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-ß signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Proteólise , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteína Morfogenética Óssea 1/genética , Adesão Celular , Linhagem Celular Tumoral , Humanos , Trombospondina 1/genética , Fator de Crescimento Transformador beta/genética , Xenopus laevis
20.
Molecules ; 25(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486092

RESUMO

Previous studies revealed the potential of Labrenzia aggregata USBA 371 to produce cytotoxic metabolites. This study explores its metabolic diversity and compounds involved in its cytotoxic activity. Extracts from the extracellular fraction of strain USBA 371 showed high levels of cytotoxic activity associated with the production of diketopiperazines (DKPs). We purified two compounds and a mixture of two other compounds from this fraction. Their structures were characterized by 1D and 2D nuclear magnetic resonance (NMR). The purified compounds were evaluated for additional cytotoxic activities. Compound 1 (cyclo (l-Pro-l-Tyr)) showed cytotoxicity to the following cancer cell lines: breast cancer 4T1 (IC50 57.09 ± 2.11 µM), 4T1H17 (IC50 40.38 ± 1.94), MCF-7 (IC50 87.74 ± 2.32 µM), murine melanoma B16 (IC50 80.87 ± 3.67), human uterus sarcoma MES-SA/Dx5 P-pg (-) (IC50 291.32 ± 5.64) and MES-SA/Dx5 P-pg (+) (IC50 225.28 ± 1.23), and murine colon MCA 38 (IC50 29.85 ± 1.55). In order to elucidate the biosynthetic route of the production of DKPs and other secondary metabolites, we sequenced the genome of L. aggregata USBA 371. We found no evidence for biosynthetic pathways associated with cyclodipeptide synthases (CDPSs) or non-ribosomal peptides (NRPS), but based on proteogenomic analysis we suggest that they are produced by proteolytic enzymes. This is the first report in which the cytotoxic effect of cyclo (l-Pro-l-Tyr) produced by an organism of the genus Labrenzia has been evaluated against several cancer cell lines.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Rhodobacteraceae/química , Animais , Linhagem Celular Tumoral , DNA Bacteriano/genética , Dicetopiperazinas/química , Genômica , Humanos , Concentração Inibidora 50 , Células MCF-7 , Espectroscopia de Ressonância Magnética , Melanoma Experimental , Camundongos , Proteômica , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA