Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 73(7): 1200-1210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33452873

RESUMO

OBJECTIVE: ZAP-70W163C BALB/c (SKG) mice develop reactive arthritis (ReA) following infection with Chlamydia muridarum. Since intracellular pathogens enhance their replicative fitness in stressed host cells, we examined how myeloid cells infected with C muridarum drive arthritis. METHODS: SKG, Il17a-deficient SKG, and BALB/c female mice were infected with C muridarum or C muridarum luciferase in the genitals. C muridarum dissemination was assessed by in vivo imaging or genomic DNA amplification. Macrophages were depleted using clodronate liposomes. Anti-tumor necrosis factor (anti-TNF) and anti-interleukin-23p19 (anti-IL-23p19) were administered after infection or arthritis onset. Gene expression of Hspa5, Tgtp1, Il23a, Il17a, Il12b, and Tnf was compared in SKG mice and BALB/c mice. RESULTS: One week following infection with C muridarum, macrophages and neutrophils were observed to have infiltrated the uteri of mice and were also shown to have carried C muridarum DNA to the spleen. C muridarum load was higher in SKG mice than in BALB/c mice. Macrophage depletion was shown to reduce C muridarum load and prevent development of arthritis. Compared with BALB/c mice, expression of Il23a and Il17a was increased in the uterine and splenic neutrophils of SKG mice. The presence of anti-IL-23p19 during infection or Il17a deficiency suppressed arthritis. Tnf was overexpressed in the joints of SKG mice within 1 week postinfection, and persisted beyond the first week. TNF inhibition during infection or at arthritis onset suppressed the development of arthritis. Levels of endoplasmic reticulum stress were constitutively increased in the joints of SKG mice but were induced, in conjunction with immunity-related GTPase, by C muridarum infection in the uterus. CONCLUSION: C muridarum load is higher in SKG mice than in BALB/c mice. Whereas proinflammatory IL-23 produced by neutrophils contributes to the initiation of C muridarum-mediated ReA, macrophage depletion reduces C muridarum dissemination to other tissues, tissue burden, and the development of arthritis. TNF inhibition was also shown to suppress arthritis development. Our data suggest that enhanced bacterial dissemination in macrophages of SKG mice drives the TNF production needed for persistent arthritis.


Assuntos
Artrite Reativa/imunologia , Infecções por Chlamydia/imunologia , Subunidade p19 da Interleucina-23/imunologia , Interleucina-23/imunologia , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Artrite Experimental/genética , Artrite Reativa/genética , Chlamydia muridarum , Chaperona BiP do Retículo Endoplasmático , Feminino , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Subunidade p19 da Interleucina-23/genética , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/imunologia , Fator de Necrose Tumoral alfa/genética , Proteína-Tirosina Quinase ZAP-70/genética
2.
Hum Reprod ; 34(10): 1891-1898, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31586185

RESUMO

STUDY QUESTION: Can Chlamydia be found in the testes of infertile men? SUMMARY ANSWER: Chlamydia can be found in 16.7% of fresh testicular biopsies and 45.3% of fixed testicular biopsies taken from a selection of infertile men. WHAT IS KNOWN ALREADY: Male chlamydial infection has been understudied despite male and female infections occurring at similar rates. This is particularly true of asymptomatic infections, which occur in 50% of cases. Chlamydial infection has also been associated with increased sperm DNA damage and reduced male fertility. STUDY DESIGN, SIZE, DURATION: We collected diagnostic (fixed, n = 100) and therapeutic (fresh, n = 18) human testicular biopsies during sperm recovery procedures from moderately to severely infertile men in a cross-sectional approach to sampling. PARTICIPANTS/MATERIALS, SETTING, METHODS: The diagnostic and therapeutic biopsies were tested for Chlamydia-specific DNA and protein, using real-time PCR and immunohistochemical approaches, respectively. Serum samples matched to the fresh biopsies were also assayed for the presence of Chlamydia-specific antibodies using immunoblotting techniques. MAIN RESULTS AND THE ROLE OF CHANCE: Chlamydial major outer membrane protein was detected in fixed biopsies at a rate of 45.3%. This was confirmed by detection of chlamydial DNA and TC0500 protein (replication marker). C. trachomatis DNA was detected in fresh biopsies at a rate of 16.7%, and the sera from each of these three positive patients contained C. trachomatis-specific antibodies. Overall, C. trachomatis-specific antibodies were detected in 72.2% of the serum samples from the patients providing fresh biopsies, although none of the patients were symptomatic nor had they reported a previous sexually transmitted infection diagnosis including Chlamydia. LIMITATIONS, REASONS FOR CAUTION: No reproductively healthy male testicular biopsies were tested for the presence of Chlamydia DNA or proteins or Chlamydia-specific antibodies due to the unavailability of these samples. WIDER IMPLICATIONS FOR THE FINDINGS: Application of Chlamydia-specific PCR and immunohistochemistry in this human male infertility context of testicular biopsies reveals evidence of a high prevalence of previously unrecognised infection, which may potentially have a pathogenic role in spermatogenic failure. STUDY FUNDING/COMPETING INTEREST(S): Funding for this project was provided by the Australian NHMRC under project grant number APP1062198. We also acknowledge assistance from the Monash IVF Group and Queensland Fertility Group in the collection of fresh biopsies, and the Monash Health and co-author McLachlan (declared equity interest) in retrieval and sectioning of fixed biopsies. E.M. declares an equity interest in the study due to financing of fixed biopsy sectioning. All other authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Azoospermia/microbiologia , Infecções por Chlamydia/diagnóstico , Chlamydia trachomatis/isolamento & purificação , Testículo/microbiologia , Infecções Assintomáticas , Azoospermia/diagnóstico , Azoospermia/patologia , Azoospermia/terapia , Infecções por Chlamydia/complicações , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia trachomatis/genética , Estudos Transversais , DNA Bacteriano/isolamento & purificação , Humanos , Masculino , Recuperação Espermática , Testículo/patologia
3.
Biol Reprod ; 101(4): 748-759, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31373361

RESUMO

The incidence of Chlamydia infection, in both females and males, is increasing worldwide. Male infections have been associated clinically with urethritis, epididymitis, and orchitis, believed to be caused by ascending infection, although the impact of infection on male fertility remains controversial. Using a mouse model of male chlamydial infection, we show that all the major testicular cell populations, germ cells, Sertoli cells, Leydig cells, and testicular macrophages can be productively infected. Furthermore, sperm isolated from vas deferens of infected mice also had increased levels of DNA damage as early as 4 weeks post-infection. Bilateral vasectomy, prior to infection, did not affect the chlamydial load recovered from testes at 2, 4, and 8 weeks post-infection, and Chlamydia-infected macrophages were detectable in blood and the testes as soon as 3 days post-infection. Partial depletion of macrophages with clodronate liposomes significantly reduced the testicular chlamydial burden, consistent with a hematogenous route of infection, with Chlamydia transported to the testes in infected macrophages. These data suggest that macrophages serve as Trojan horses, transporting Chlamydia from the penile urethra to the testes within 3 days of infection, bypassing the entire male reproductive tract. In the testes, infected macrophages likely transfer infection to Leydig, Sertoli, and germ cells, causing sperm DNA damage and impaired spermatogenesis.


Assuntos
Infecções por Chlamydia/complicações , Chlamydia muridarum/fisiologia , Infertilidade Masculina , Macrófagos/microbiologia , Testículo/microbiologia , Uretra/microbiologia , Animais , Células Cultivadas , Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/genética , Dano ao DNA , Infertilidade Masculina/genética , Infertilidade Masculina/microbiologia , Infertilidade Masculina/patologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Orquite/complicações , Orquite/microbiologia , Orquite/patologia , Organismos Geneticamente Modificados , Espermatozoides/metabolismo , Espermatozoides/microbiologia , Testículo/patologia , Uretra/patologia
4.
Immunol Cell Biol ; 97(10): 865-876, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348541

RESUMO

Chlamydia infection remains the leading sexually-transmitted bacterial infection worldwide, causing damaging sequelae such as tubal scarring, infertility and ectopic pregnancy. As infection is often asymptomatic, prevention via vaccination is the optimal strategy for disease control. Vaccination strategies aimed at preventing bacterial infection have shown some promise, although these strategies often fail to prevent damaging inflammatory pathology when Chlamydia is encountered. Using a murine model of Chlamydia muridarum genital infection, we employed two established independent models to compare immune responses underpinning pathologic development of genital Chlamydia infection. Model one uses antibiotic treatment during infection, with only early treatment preventing pathology. Model two uses a plasmid-cured variant strain of C. muridarum that does not cause pathologic outcomes like the plasmid-containing wild-type counterpart. Using these infection models, contrasted by the development of pathology, we identified an unexpected role for macrophages. We observed that mice showing signs of pathology had greater numbers of activated macrophages present in the oviducts. This may have been due to early differences in macrophage activation and proinflammatory signaling leading to persistent or enhanced infection. These results provide valuable insight into the cellular mechanisms driving pathology in Chlamydia infection and contribute to the design and development of more effective vaccine strategies for protection against the deleterious sequelae of Chlamydia infection of the female reproductive tract.


Assuntos
Azitromicina/farmacologia , Chlamydia muridarum/fisiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Tubas Uterinas/patologia , Inflamação/patologia , Macrófagos/microbiologia , Oviductos/patologia , Animais , Infecções por Chlamydia/genética , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/efeitos dos fármacos , Doença Crônica , Citocinas/metabolismo , Tubas Uterinas/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Oviductos/efeitos dos fármacos
5.
Sci Rep ; 9(1): 426, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674985

RESUMO

Non-resolved persistent macrophage-mediated synovial inflammation is considered as one of the main drivers of both the establishment and progression of obesity-associated osteoarthritis (OA). Herein, we used clodronate-loaded liposomes (CL) to locally deplete macrophages in the synovial joints to examine the role of macrophages in the progression of obesity-induced OA. Furthermore, resolvin D1 (RvD1), a unique family of pro-resolving lipid mediator derived from the omega-3 polyunsaturated fatty acid, have shown marked potency in changing the pro-inflammatory behaviour of the macrophages. We sought to determine whether RvD1 administration ameliorates obesity-induced OA by resolving macrophage-mediated synovitis. Therapeutic properties of RvD1 and macrophage depletion (CL) were tested for its ability to slow post-traumatic OA (PTOA) in obese mice models. PTOA was induced in C57Bl/6 mice fed with high-fat diet (HFD) by surgically destabilising the meniscus. Firstly, CL treatment showed beneficial effects in reducing synovitis and cartilage destruction in obese mice with PTOA. In vitro treatment with RvD1 decreased the levels of pro-inflammatory markers in CD14+ human macrophages. Furthermore, intra-articular treatment with RvD1 diminishes the progression of OA in the knee joint from mice as follows: (a) decreases macrophages infiltration in synovium, (b) reduces the number of pro-inflammatory macrophages in synovium and (c) improves the severity of synovitis and cartilage degradation. Thus, our results provide new evidence for the potential targeting of macrophages in the treatment of obesity-induced OA.


Assuntos
Ácidos Docosa-Hexaenoicos/imunologia , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Osteoartrite/imunologia , Membrana Sinovial/imunologia , Animais , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Humanos , Mediadores da Inflamação/farmacologia , Macrófagos/patologia , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/patologia , Osteoartrite/induzido quimicamente , Osteoartrite/patologia , Membrana Sinovial/patologia
6.
Dev Comp Immunol ; 60: 80-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26905635

RESUMO

The koala (Phascolarctos cinereus) is an arboreal herbivorous marsupial that is an Australian icon. Koalas in many parts of Australia are under multiple threats including habitat destruction, dog attacks, vehicular accidents, and infectious diseases such as Chlamydia spp. and the koala retrovirus (KoRV), which may contribute to the incidence of lymphoma and leukaemia in this species. Due to a lack of koala-specific immune reagents and assays there is currently no way to adequately analyse the immune response in healthy, diseased or vaccinated animals. This paper reports the production and characterisation of the first anti-koala CD4 monoclonal antibody (mAb). The koala CD4 gene was identified and used to develop recombinant proteins for mAb production. Fluorochrome-conjugated anti-CD4 mAb was used to measure the levels of CD4(+) lymphocytes collected from koala spleens (41.1%, range 20-45.1%) lymph nodes (36.3%, range 19-55.9%) and peripheral blood (23.8%, range 17.3-35%) by flow cytometry. Biotin-conjugated anti-CD4 mAb was used for western blot to determine an approximate size of 52 kDa for the koala CD4 molecule and used in immunohistochemistry to identify CD4(+) cells in the paracortical region and germinal centres of spleen and lymph nodes. Using the anti-CD4 mab we showed that CD4 cells from vaccinated, but not control, koalas proliferated following in vitro stimulation with UV-inactivated Chlamydia pecorum and recombinant chlamydial antigens. Since CD4(+) T cells have been shown to play a pivotal role in clearing chlamydial infection in both human and mouse infections, using this novel antibody will help determine the role CD4(+) T cells play in protection against chlamydial infection in koalas and also enhance our knowledge of how KoRV affects the koala immune system.


Assuntos
Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/imunologia , Phascolarctidae/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Antígenos CD4/imunologia , Proliferação de Células , Separação Celular , Citometria de Fluxo , Hibridomas , Imunoensaio , Linfonodos/metabolismo , Camundongos Endogâmicos C57BL , Filogenia , Baço/metabolismo
7.
Arthritis Rheumatol ; 67(6): 1535-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25624153

RESUMO

OBJECTIVE: Chlamydia trachomatis is a sexually transmitted obligate intracellular pathogen that causes inflammatory reactive arthritis, spondylitis, psoriasiform dermatitis, and conjunctivitis in some individuals after genital infection. The immunologic basis for this inflammatory response in susceptible hosts is poorly understood. As ZAP-70(W163C) -mutant BALB/c (SKG) mice are susceptible to spondylo-arthritis after systemic exposure to microbial ß-glucan, we undertook the present study to compare responses to infection with Chlamydia muridarum in SKG mice and BALB/c mice. METHODS: After genital or respiratory infection with C muridarum, conjunctivitis and arthritis were assessed clinically, and eye, skin, and joint specimens were analyzed histologically. Chlamydial major outer membrane protein antigen-specific responses were assessed in splenocytes. Treg cells were depleted from FoxP3-DTR BALB/c or SKG mice, and chlamydial DNA was quantified by polymerase chain reaction. RESULTS: Five weeks after vaginal infection with live C muridarum, arthritis, spondylitis, and psoriasiform dermatitis developed in female SKG mice, but not in BALB/c mice. Inflammatory bowel disease did not occur in mice of either strain. The severity of inflammatory disease was correlated with C muridarum inoculum size and vaginal burden postinoculation. Treatment with combination antibiotics starting 1 day postinoculation prevented disease. Chlamydial antigen was present in macrophages and spread from the infection site to lymphoid organs and peripheral tissue. In response to chlamydial antigen, production of interferon-γ and interleukin-17 was impaired in T cells from SKG mice but tumor necrosis factor (TNF) responses were exaggerated, compared to findings in T cells from BALB/c mice. Unlike previous observations in arthritis triggered by ß-glucan, no autoantibodies developed. Accelerated disease triggered by depletion of Treg cells was TNF dependent. CONCLUSION: In the susceptible SKG strain, Chlamydia-induced reactive arthritis develops as a result of deficient intracellular pathogen control, with antigen-specific TNF production upon dissemination of antigen, and TNF-dependent inflammatory disease.


Assuntos
Anticorpos Antibacterianos/imunologia , Artrite Reativa/imunologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Infecções do Sistema Genital/imunologia , Infecções Respiratórias/imunologia , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Feminino , Doenças Inflamatórias Intestinais/imunologia , Interferon gama/imunologia , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Psoríase/imunologia , Linfócitos T/imunologia , Vaginose Bacteriana
8.
Biol Reprod ; 92(1): 27, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25472923

RESUMO

Chlamydia trachomatis infections are increasingly prevalent worldwide. Male chlamydial infections are associated with urethritis, epididymitis, and orchitis; however, the role of Chlamydia in prostatitis and male factor infertility remains controversial. Using a model of Chlamydia muridarum infection in male C57BL/6 mice, we investigated the effects of chlamydial infection on spermatogenesis and determined the potential of immune T cells to prevent infection-induced outcomes. Antigen-specific CD4 T cells significantly reduced the infectious burden in the penile urethra, epididymis, and vas deferens. Infection disrupted seminiferous tubules, causing loss of germ cells at 4 and 8 wk after infection, with the most severely affected tubules containing only Sertoli cells. Increased mitotic proliferation, DNA repair, and apoptosis in spermatogonial cells and damaged germ cells were evident in atrophic tubules. Activated caspase 3 (casp3) staining revealed increased (6-fold) numbers of Sertoli cells with abnormal morphology that were casp3 positive in tubules of infected mice, indicating increased levels of apoptosis. Sperm count and motility were both decreased in infected mice, and there was a significant decrease in morphologically normal spermatozoa. Assessment of the spermatogonial stem cell population revealed a decrease in promyelocytic leukemia zinc finger (PLZF)-positive cells in the seminiferous tubules. Interestingly, adoptive transfer of antigen-specific CD4 cells, particularly T-helper 2-like cells, prior to infection prevented these effects in spermatogenesis and Sertoli cells. These data suggest that chlamydial infection adversely affects spermatogenesis and male fertility, and that vaccination can potentially prevent the spread of infection and these adverse outcomes.


Assuntos
Apoptose , Proteínas da Membrana Bacteriana Externa/imunologia , Linfócitos T CD4-Positivos/fisiologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Citoproteção/imunologia , Células de Sertoli/fisiologia , Espermatozoides/fisiologia , Animais , Apoptose/imunologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/patogenicidade , Infertilidade Masculina/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese/fisiologia
9.
PLoS One ; 8(4): e61962, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613984

RESUMO

Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.


Assuntos
Infecções por Chlamydia/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia/imunologia , Chlamydia/patogenicidade , Vacinação/métodos , Animais , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA