Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Prog Retin Eye Res ; 100: 101248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369182

RESUMO

Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.


Assuntos
Células-Tronco Pluripotentes , Doenças Retinianas , Animais , Humanos , Diferenciação Celular/fisiologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/patologia
2.
Cell Biol Toxicol ; 39(1): 1-18, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35641671

RESUMO

The airway epithelium represents the main barrier between inhaled air and the tissues of the respiratory tract and is therefore an important point of contact with xenobiotic substances into the human body. Several studies have recently shown that in vitro models of the airway grown at an air-liquid interface (ALI) can be particularly useful to obtain mechanistic information about the toxicity of chemical compounds. However, such methods are not very amenable to high throughput since the primary cells cannot be expanded indefinitely in culture to obtain a sustainable number of cells. Induced pluripotent stem cells (iPSCs) have become a popular option in the recent years for modelling the airways of the lung, but despite progress in the field, such models have so far not been assessed for their ability to metabolise xenobiotic compounds and how they compare to the primary bronchial airway model (pBAE). Here, we report a comparative analysis by TempoSeq (oligo-directed sequencing) of an iPSC-derived airway model (iBAE) with a primary bronchial airway model (pBAE). The iBAE and pBAE were differentiated at an ALI and then evaluated in a 5-compound screen with exposure to a sub-lethal concentration of each compound for 24 h. We found that despite lower expression of xenobiotic metabolism genes, the iBAE similarly predicted the toxic pathways when compared to the pBAE model. Our results show that iPSC airway models at ALI show promise for inhalation toxicity assessments with further development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Transcriptoma , Xenobióticos/toxicidade , Xenobióticos/metabolismo , Mucosa Respiratória/metabolismo , Epitélio , Células Epiteliais/metabolismo
3.
Stem Cell Reports ; 17(7): 1699-1713, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750043

RESUMO

Conjunctival epithelial cells, which express viral-entry receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), constitute the largest exposed epithelium of the ocular surface tissue and may represent a relevant viral-entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of basal, suprabasal, and superficial epithelial cells, and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single-cell RNA sequencing (RNA-seq), with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome expression, a productive infection did not ensue. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust autocrine and paracrine NF-κB activity, without activation of antiviral interferon signalling. Collectively, these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies and conjunctival transplantation.


Assuntos
COVID-19 , Células Epiteliais/metabolismo , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2
4.
Stem Cells Transl Med ; 11(4): 415-433, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35325233

RESUMO

Retinoblastoma (Rb) is a childhood cancer of the developing retina, accounting for up to 17% of all tumors in infancy. To gain insights into the transcriptional events of cell state transitions during Rb development, we established 2 disease models via retinal organoid differentiation of a pRB (retinoblastoma protein)-depleted human embryonic stem cell line (RB1-null hESCs) and a pRB patient-specific induced pluripotent (iPSC) line harboring a RB1 biallelic mutation (c.2082delC). Both models were characterized by pRB depletion and accumulation of retinal progenitor cells at the expense of amacrine, horizontal and retinal ganglion cells, which suggests an important role for pRB in differentiation of these cell lineages. Importantly, a significant increase in the fraction of proliferating cone precursors (RXRγ+Ki67+) was observed in both pRB-depleted organoid models, which were defined as Rb-like clusters by single-cell RNA-Seq analysis. The pRB-depleted retinal organoids displayed similar features to Rb tumors, including mitochondrial cristae aberrations and rosette-like structures, and were able to undergo cell growth in an anchorage-independent manner, indicative of cell transformation in vitro. In both models, the Rb cones expressed retinal ganglion and horizontal cell markers, a novel finding, which could help to better characterize these tumors with possible therapeutic implications. Application of Melphalan, Topotecan, and TW-37 led to a significant reduction in the fraction of Rb proliferating cone precursors, validating the suitability of these in vitro models for testing novel therapeutics for Rb.


Assuntos
Células-Tronco Pluripotentes , Neoplasias da Retina , Retinoblastoma , Diferenciação Celular , Criança , Humanos , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Retina/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Proteína do Retinoblastoma/genética
5.
Stem Cells ; 39(10): 1310-1321, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152044

RESUMO

As one of the primary points of entry of xenobiotic substances and infectious agents into the body, the lungs are subject to a range of dysfunctions and diseases that together account for a significant number of patient deaths. In view of this, there is an outstanding need for in vitro systems in which to assess the impact of both infectious agents and xenobiotic substances of the lungs. To address this issue, we have developed a protocol to generate airway epithelial basal-like cells from induced pluripotent stem cells, which simplifies the manufacture of cellular models of the human upper airways. Basal-like cells generated in this study were cultured on transwell inserts to allow formation of a confluent monolayer and then exposed to an air-liquid interface to induce differentiation into a pseudostratified epithelial construct with a marked similarity to the upper airway epithelium in vivo. These constructs contain the component cell types required of an epithelial model system, produce mucus and functional cilia, and can support SARS-CoV-2 infection/replication and the secretion of cytokines in a manner similar to that of in vivo airways. This method offers a readily accessible and highly scalable protocol for the manufacture of upper airway models that could find applications in development of therapies for respiratory viral infections and the assessment of drug toxicity on the human lungs.


Assuntos
COVID-19/patologia , COVID-19/virologia , Células-Tronco Pluripotentes Induzidas/patologia , Pulmão/patologia , Pulmão/virologia , Modelos Biológicos , SARS-CoV-2/fisiologia , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Mediadores da Inflamação/metabolismo , Replicação Viral/fisiologia
6.
Ocul Surf ; 21: 279-298, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865984

RESUMO

PURPOSE: Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood. METHODS: Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering. Cluster identification was performed based on marker gene expression, bioinformatic data mining and immunofluorescence (IF) analysis. RNA interference, IF, colony forming efficiency and clonal assays were performed on cultured limbal epithelial cells (LECs). RESULTS: scRNA-Seq analysis of 21,343 cells from four adult human corneas and adjacent conjunctivas revealed the presence of 21 cell clusters, representing the progenitor and differentiated cells in all layers of cornea and conjunctiva as well as immune cells, melanocytes, fibroblasts, and blood/lymphatic vessels. A small cell cluster with high expression of limbal progenitor cell (LPC) markers was identified and shown via pseudotime analysis to give rise to five other cell types representing all the subtypes of differentiated limbal and corneal epithelial cells. A novel putative LPCs surface marker, GPHA2, expressed on the surface of 0.41% ± 0.21 of the cultured LECs, was identified, based on predominant expression in the limbal crypts of adult and developing cornea and RNAi validation in cultured LECs. Combining scRNA- and ATAC-Seq analyses, we identified multiple upstream regulators for LPCs and demonstrated a close interaction between the immune cells and limbal progenitor cells. RNA-Seq analysis indicated the loss of GPHA2 expression and acquisition of proliferative limbal basal epithelial cell markers during ex vivo LEC expansion, independently of the culture method used. Extending the single cell analyses to keratoconus, we were able to reveal activation of collagenase in the corneal stroma and a reduced pool of limbal suprabasal cells as two key changes underlying the disease phenotype. Single cell RNA-Seq of 89,897 cells obtained from embryonic and fetal cornea indicated that during development, the conjunctival epithelium is the first to be specified from the ocular surface epithelium, followed by the corneal epithelium and the establishment of LPCs, which predate the formation of limbal niche by a few weeks. CONCLUSIONS: Our scRNA-and ATAC-Seq data of developing and adult cornea in steady state and disease conditions provide a unique resource for defining genes/pathways that can lead to improvement in ex vivo LPCs expansion, stem cell differentiation methods and better understanding and treatment of ocular surface disorders.


Assuntos
Epitélio Corneano , Limbo da Córnea , Adulto , Diferenciação Celular , Células Cultivadas , Córnea , Células Epiteliais , Humanos , Células-Tronco
7.
Stem Cells ; 39(7): 882-896, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33657251

RESUMO

Retinal dystrophies often lead to blindness. Developing therapeutic interventions to restore vision is therefore of paramount importance. Here we demonstrate the ability of pluripotent stem cell-derived cone precursors to engraft and restore light responses in the Pde6brd1 mouse, an end-stage photoreceptor degeneration model. Our data show that up to 1.5% of precursors integrate into the host retina, differentiate into cones, and engraft in close apposition to the host bipolar cells. Half of the transplanted mice exhibited visual behavior and of these 33% showed binocular light sensitivity. The majority of retinal ganglion cells exhibited contrast-sensitive ON, OFF or ON-OFF light responses and even motion sensitivity; however, quite a few exhibited unusual responses (eg, light-induced suppression), presumably reflecting remodeling of the neural retina. Our data indicate that despite relatively low engraftment yield, pluripotent stem cell-derived cone precursors can elicit light responsiveness even at advanced degeneration stages. Further work is needed to improve engraftment yield and counteract retinal remodeling to achieve useful clinical applications.


Assuntos
Células-Tronco Pluripotentes , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Transplante de Células-Tronco , Animais , Camundongos , Células-Tronco Pluripotentes/transplante , Degeneração Retiniana/terapia , Células Ganglionares da Retina/patologia
8.
Mol Pharmacol ; 96(4): 475-484, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399497

RESUMO

Topoisomerase II (TOP2) poisons are effective cytotoxic anticancer agents that stabilize the normally transient TOP2-DNA covalent complexes formed during the enzyme reaction cycle. These drugs include etoposide, mitoxantrone, and the anthracyclines doxorubicin and epirubicin. Anthracyclines also exert cell-killing activity via TOP2-independent mechanisms, including DNA adduct formation, redox activity, and lipid peroxidation. Here, we show that anthracyclines and another intercalating TOP2 poison, mitoxantrone, stabilize TOP2-DNA covalent complexes less efficiently than etoposide, and at higher concentrations they suppress the formation of TOP2-DNA covalent complexes, thus behaving as TOP2 poisons at low concentration and inhibitors at high concentration. We used induced pluripotent stem cell (iPSC)-derived human cardiomyocytes as a model to study anthracycline-induced damage in cardiac cells. Using immunofluorescence, our study is the first to demonstrate the presence of topoisomerase IIß (TOP2B) as the only TOP2 isoform in iPSC-derived cardiomyocytes. In these cells, etoposide robustly induced TOP2B covalent complexes, but we could not detect doxorubicin-induced TOP2-DNA complexes, and doxorubicin suppressed etoposide-induced TOP2-DNA complexes. In vitro, etoposide-stabilized DNA cleavage was attenuated by doxorubicin, epirubicin, or mitoxantrone. Clinical use of anthracyclines is associated with cardiotoxicity. The observations in this study have potentially important clinical consequences regarding the effectiveness of anticancer treatment regimens when TOP2-targeting drugs are used in combination. These observations suggest that inhibition of TOP2B activity, rather than DNA damage resulting from TOP2 poisoning, may play a role in doxorubicin cardiotoxicity. SIGNIFICANCE STATEMENT: We show that anthracyclines and mitoxantrone act as topoisomerase II (TOP2) poisons at low concentration but attenuate TOP2 activity at higher concentration, both in cells and in in vitro cleavage experiments. Inhibition of type II topoisomerases suppresses the action of other drugs that poison TOP2. Thus, combinations containing anthracyclines or mitoxantrone and etoposide may reduce the activity of etoposide as a TOP2 poison and thus reduce the efficacy of drug combinations.


Assuntos
Antraciclinas/farmacologia , Adutos de DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Mitoxantrona/farmacologia , Cardiotoxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/efeitos adversos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células K562 , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores da Topoisomerase II/farmacologia
9.
PLoS One ; 14(6): e0218135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242206

RESUMO

The rat pancreatic AR42J-B13 (B-13) cell line differentiates into non-replicative hepatocyte-like (B-13/H) cells in response to glucocorticoid. Since this response is dependent on an induction of serine/threonine protein kinase 1 (SGK1), this may suggest that a general pivotal role for SGK1 in hepatocyte maturation. To test this hypothesis, the effects of expressing adenoviral-encoded flag tagged human SGK1F (AdV-SGK1F) was examined at 3 stages of human induced pluripotent stem cell (iPSC) differentiation to hepatocytes. B-13 cells infected with AdV-SGK1F in the absence of glucocorticoid resulted in expression of flag tagged SGK1F protein; increases in ß-catenin phosphorylation; decreases in Tcf/Lef transcriptional activity; expression of hepatocyte marker genes and conversion of B-13 cells to a cell phenotype near-similar to B-13/H cells. Given this demonstration of functionality, iPSCs directed to differentiate towards hepatocyte-like cells using a standard protocol of chemical inhibitors and mixtures of growth factors were additionally infected with AdV-SGK1F, either at an early time point during differentiation to endoderm; during endoderm differentiation to anterior definitive endoderm and hepatoblasts and once converted to hepatocyte-like cells. SGK1F expression had no effect on differentiation to endoderm, likely due to low levels of expression. However, expression of SGK1F in both iPSCs-derived endoderm and hepatocyte-like cells both resulted in promotion of cells to an hepatoblast phenotype. These data demonstrate that SGK1 expression promotes an hepatoblast phenotype rather than maturation of human iPSC towards a mature hepatocyte phenotype and suggest a transient role for Sgk1 in promoting an hepatoblast state in B-13 trans-differentiation to B-13/H cells.


Assuntos
Diferenciação Celular , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , L-Serina Desidratase/metabolismo , Animais , Linhagem Celular , Endoderma/citologia , Células HEK293 , Humanos , Ratos
10.
Stem Cells ; 37(5): 609-622, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681766

RESUMO

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.


Assuntos
Diferenciação Celular/genética , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/transplante , Degeneração Retiniana/terapia , Animais , Linhagem da Célula/genética , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Organoides/transplante , Células-Tronco Pluripotentes/transplante , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/transplante , Transcriptoma/genética
11.
Int J Med Sci ; 15(1): 36-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333086

RESUMO

Results obtained from completed and on-going clinical studies indicate huge therapeutic potential of stem cell-based therapy in the treatment of degenerative, autoimmune and genetic disorders. However, clinical application of stem cells raises numerous ethical and safety concerns. In this review, we provide an overview of the most important ethical issues in stem cell therapy, as a contribution to the controversial debate about their clinical usage in regenerative and transplantation medicine. We describe ethical challenges regarding human embryonic stem cell (hESC) research, emphasizing that ethical dilemma involving the destruction of a human embryo is a major factor that may have limited the development of hESC-based clinical therapies. With previous derivation of induced pluripotent stem cells (iPSCs) this problem has been overcome, however current perspectives regarding clinical translation of iPSCs still remain. Unlimited differentiation potential of iPSCs which can be used in human reproductive cloning, as a risk for generation of genetically engineered human embryos and human-animal chimeras, is major ethical issue, while undesired differentiation and malignant transformation are major safety issues. Although clinical application of mesenchymal stem cells (MSCs) has shown beneficial effects in the therapy of autoimmune and chronic inflammatory diseases, the ability to promote tumor growth and metastasis and overestimated therapeutic potential of MSCs still provide concerns for the field of regenerative medicine. This review offers stem cell scientists, clinicians and patient's useful information and could be used as a starting point for more in-depth analysis of ethical and safety issues related to clinical application of stem cells.


Assuntos
Pesquisa Biomédica/ética , Transplante de Células/ética , Engenharia Genética/ética , Terapia Genética/ética , Células-Tronco Embrionárias Humanas/transplante , Animais , Pesquisa Biomédica/métodos , Técnicas de Cultura de Células/ética , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Transplante de Células/métodos , Quimera/genética , Embrião de Mamíferos/citologia , Engenharia Genética/efeitos adversos , Engenharia Genética/métodos , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/ética , Medicina Regenerativa/ética , Medicina Regenerativa/métodos
12.
Cell Death Dis ; 9(2): 128, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374141

RESUMO

Aplastic Anemia (AA) is a bone marrow failure (BMF) disorder, resulting in bone marrow hypocellularity and peripheral pancytopenia. Severe aplastic anemia (SAA) is a subset of AA defined by a more severe phenotype. Although the immunological nature of SAA pathogenesis is widely accepted, there is an increasing recognition of the role of dysfunctional hematopoietic stem cells in the disease phenotype. While pediatric SAA can be attributable to genetic causes, evidence is evolving on previously unrecognized genetic etiologies in a proportion of adults with SAA. Thus, there is an urgent need to better understand the pathophysiology of SAA, which will help to inform the course of disease progression and treatment options. We have derived induced pluripotent stem cell (iPSC) from three unaffected controls and three SAA patients and have shown that this in vitro model mimics two key features of the disease: (1) the failure to maintain telomere length during the reprogramming process and hematopoietic differentiation resulting in SAA-iPSC and iPSC-derived-hematopoietic progenitors with shorter telomeres than controls; (2) the impaired ability of SAA-iPSC-derived hematopoietic progenitors to give rise to erythroid and myeloid cells. While apoptosis and DNA damage response to replicative stress is similar between the control and SAA-iPSC-derived-hematopoietic progenitors, the latter show impaired proliferation which was not restored by eltrombopag, a drug which has been shown to restore hematopoiesis in SAA patients. Together, our data highlight the utility of patient specific iPSC in providing a disease model for SAA and predicting patient responses to various treatment modalities.


Assuntos
Anemia Aplástica/patologia , Diferenciação Celular , Células-Tronco Hematopoéticas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Encurtamento do Telômero , Benzoatos/farmacologia , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hidrazinas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Pirazóis/farmacologia , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero/efeitos dos fármacos
13.
Stem Cells ; 36(3): 337-348, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29226476

RESUMO

Cornea is a clear outermost layer of the eye which enables transmission of light onto the retina. The transparent corneal epithelium is regenerated by limbal stem cells (LSCs), whose loss/dysfunction results in LSCs deficiency (LSCD). Ex vivo expansion of autologous LSCs obtained from patient's healthy eye followed by transplantation onto the LSCs damaged/deficient eye, has provided a successful treatment for unilateral LSCD. However, this is not applicable to patient with total bilateral LSCD, where LSCs are lost/damaged from both eyes. We investigated the potential of human induced pluripotent stem cell (hiPSC) to differentiate into corneal epithelial-like cells as a source of autologous stem cell treatment for patients with total bilateral LSCD. Our study showed that combined addition of bone morphogenetic protein 4 (BMP4), all trans-retinoic acid and epidermal growth factor for the first 9 days of differentiation followed by cell-replating on collagen-IV-coated surfaces with a corneal-specific-epithelial cell media for an additional 11 days, resulted in step wise differentiation of human embryonic stem cells (hESC) to corneal epithelial progenitors and mature corneal epithelial-like cells. We observed differences in the ability of hiPSC lines to undergo differentiation to corneal epithelial-like cells which were dependent on the level of endogenous BMP signaling and could be restored via the activation of this signaling pathway by a specific transforming growth factor ß inhibitor (SB431542). Together our data reveal a differential ability of hiPSC lines to generate corneal epithelial cells which is underlined by the activity of endogenous BMP signaling pathway. Stem Cells 2018;36:337-348.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células 3T3 , Animais , Benzamidas/farmacologia , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Dioxóis/farmacologia , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Imunofluorescência , Humanos , Linfotoxina-alfa/antagonistas & inibidores , Linfotoxina-alfa/metabolismo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
14.
Stem Cells ; 36(1): 55-64, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047185

RESUMO

Hematopoietic stem cells derived from pluripotent stem cells could be used as an alternative to bone marrow transplants. Deriving these has been a long-term goal for researchers. However, the success of these efforts has been limited with the cells produced able to engraft in the bone marrow of recipient animals only in very low numbers. There is evidence that defects in the migratory and homing capacity of the cells are due to mis-regulation of miRNA expression and are responsible for their failure to engraft. We compared the miRNA expression profile of hematopoietic progenitors derived from pluripotent stem cells to those derived from bone marrow and found that numerous miRNAs are too highly expressed in hematopoietic progenitors derived from pluripotent stem cells, and that most of these are inhibitors of epithelial-mesenchymal transition or metastasis (including miR-200b, miR-200c, miR-205, miR-148a, and miR-424). We hypothesize that the high expression of these factors, which promote an adherent phenotype, may be causing the defect in hematopoietic differentiation. However, inhibiting these miRNAs, individually or in multiplex, was insufficient to improve hematopoietic differentiation in vitro, suggesting that other miRNAs and/or genes may be involved in this process. Stem Cells 2018;36:55-64.


Assuntos
Transição Epitelial-Mesenquimal/genética , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Regulação para Baixo , Humanos
15.
Stem Cells ; 35(11): 2305-2320, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28913923

RESUMO

Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low-risk genotype and two patients with advanced AMD and high-risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H-like protein 1. The iPSC RPE cells derived from high-risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of "drüsen"-like deposits. The low- and high-risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high-risk AMD-RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. Stem Cells 2017;35:2305-2320.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/terapia , Raios Ultravioleta , Terapia Ultravioleta/métodos , Idoso , Animais , Fator H do Complemento/metabolismo , Humanos , Degeneração Macular/etiologia , Camundongos , Camundongos SCID
16.
Stem Cells ; 35(2): 284-298, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870251

RESUMO

Bone marrow failure syndromes (BMFS) are a group of disorders with complex pathophysiology characterized by a common phenotype of peripheral cytopenia and/or hypoplastic bone marrow. Understanding genetic factors contributing to the pathophysiology of BMFS has enabled the identification of causative genes and development of diagnostic tests. To date more than 40 mutations in genes involved in maintenance of genomic stability, DNA repair, ribosome and telomere biology have been identified. In addition, pathophysiological studies have provided insights into several biological pathways leading to the characterization of genotype/phenotype correlations as well as the development of diagnostic approaches and management strategies. Recent developments in bone marrow transplant techniques and the choice of conditioning regimens have helped improve transplant outcomes. However, current morbidity and mortality remain unacceptable underlining the need for further research in this area. Studies in mice have largely been unable to mimic disease phenotype in humans due to difficulties in fully replicating the human mutations and the differences between mouse and human cells with regard to telomere length regulation, processing of reactive oxygen species and lifespan. Recent advances in induced pluripotency have provided novel insights into disease pathogenesis and have generated excellent platforms for identifying signaling pathways and functional mapping of haplo-insufficient genes involved in large-scale chromosomal deletions-associated disorders. In this review, we have summarized the current state of knowledge in the field of BMFS with specific focus on modeling the inherited forms and how to best utilize these models for the development of targeted therapies. Stem Cells 2017;35:284-298.


Assuntos
Anemia Aplástica/patologia , Doenças da Medula Óssea/patologia , Medula Óssea/patologia , Hemoglobinúria Paroxística/patologia , Animais , Transtornos da Insuficiência da Medula Óssea , Modelos Animais de Doenças , Humanos , Modelos Biológicos
17.
Methods Mol Biol ; 1353: 285-307, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25697416

RESUMO

Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro, increase our understanding of human embryonic development, and provide clinically relevant cell types for transplantation, drug testing, and toxicology studies. Since their discovery, numerous advances have been made in order to eliminate issues such as vector integration into the host genome, low reprogramming efficiency, incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally, we illustrate methods by which to validate pluripotency of the resulting stem cell population.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , RNA/genética , Vírus Sendai/genética , Transgenes , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Alimentadoras/citologia , Células Alimentadoras/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Modelos Biológicos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
18.
Rejuvenation Res ; 19(1): 3-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26055182

RESUMO

It was once suggested that adult or tissue-specific stem cells may be immortal; however, several recently published data suggest that their efficacy is limited by natural aging in common with most other somatic cell types. Decreased activity of stem cells in old age raises questions as to whether the age of the donor should be considered during stem cell transplantation and at what age the donor stem cells should be harvested to ensure the largest possible number of viable, functional, and non-altered stem cells. Although stem cells remain active into old age, changes in stem cells and their microenvironments inhibit their regenerative potential. The impact of aging on stem cell populations differs between tissues and depends on a number intrinsic and extrinsic factors, including systemic changes associated with immune system alterations. In this review, we describe key mechanisms of stem and progenitor cell aging and techniques that are currently used to identify signs of stem cells aging. Furthermore, we focus on the impact of aging on the capacity for proliferation, differentiation, and clinical use of stem cells. Finally, we detail the aging of embryonic, mesenchymal, and induced pluripotent stem cells, with particular emphasis on aging mechanisms and rejuvenation.


Assuntos
Senescência Celular , Rejuvenescimento , Transplante de Células-Tronco , Células-Tronco/citologia , Diferenciação Celular , Proliferação de Células , Humanos
19.
Blood ; 124(20): 3035-6, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25395139

RESUMO

In this issue of Blood, Ramos-Mejía et al provide compelling evidence for HOXA9 as a key factor that can enhance and accelerate the differentiation of these cells to blood progenitor cells in vitro.


Assuntos
Células-Tronco Embrionárias/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Animais , Humanos
20.
Stem Cells ; 31(9): 2015-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23818183

RESUMO

Cernunnos (also known as XLF) deficiency syndrome is a rare recessive autosomal disorder caused by mutations in the XLF gene, a key factor involved in the end joining step of DNA during nonhomologous end joining (NHEJ) process. Human patients with XLF mutations display microcephaly, developmental and growth delays, and severe immunodeficiency. While the clinical phenotype of DNA damage disorders, including XLF Syndrome, has been described extensively, the underlying mechanisms of disease onset, are as yet, undefined. We have been able to generate an induced pluripotent stem cell (iPSC) model of XLF deficiency, which accurately replicates the double-strand break repair deficiency observed in XLF patients. XLF patient-specific iPSCs (XLF-iPSC) show typical expression of pluripotency markers, but have altered in vitro differentiation capacity and an inability to generate teratomas comprised of all three germ layers in vivo. Our results demonstrate that XLF-iPSCs possess a weak NHEJ-mediated DNA repair capacity that is incapable of coping with the DNA lesions introduced by physiological stress, normal metabolism, and ionizing radiation. XLF-iPSC lines are capable of hematopoietic differentiation; however, the more primitive subsets of hematopoietic progenitors display increased apoptosis in culture and an inability to repair DNA damage. Together, our findings highlight the importance of NHEJ-mediated-DNA repair in the maintenance of a pristine pool of hematopoietic progenitors during human embryonic development.


Assuntos
Enzimas Reparadoras do DNA/deficiência , Proteínas de Ligação a DNA/deficiência , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA