Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077749

RESUMO

Like humans, canine lymphomas are treated by chemotherapy cocktails and frequently develop multiple drug resistance (MDR). Their shortened clinical timelines and tumor accessibility make canines excellent models to study MDR mechanisms. Insulin-sensitizers have been shown to reduce the incidence of cancer in humans prescribed them, and we previously demonstrated that they also reverse and delay MDR development in vitro. Here, we treated canines with MDR lymphoma with metformin to assess clinical and tumoral responses, including changes in MDR biomarkers, and used mRNA microarrays to determine differential gene expression. Metformin reduced MDR protein markers in all canines in the study. Microarrays performed on mRNAs gathered through longitudinal tumor sampling identified a 290 gene set that was enriched in Anaphase Promoting Complex (APC) substrates and additional mRNAs associated with slowed mitotic progression in MDR samples compared to skin controls. mRNAs from a canine that went into remission showed that APC substrate mRNAs were decreased, indicating that the APC was activated during remission. In vitro validation using canine lymphoma cells selected for resistance to chemotherapeutic drugs confirmed that APC activation restored MDR chemosensitivity, and that APC activity was reduced in MDR cells. This supports the idea that rapidly pushing MDR cells that harbor high loads of chromosome instability through mitosis, by activating the APC, contributes to improved survival and disease-free duration.

2.
BMJ Case Rep ; 20182018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042107

RESUMO

The discovery of adrenal lesions during routine testing for hypertension requires focused consideration for adrenal overproduction of cortisol, aldosterone or metanephrines. An otherwise healthy 25-year-old woman presented with headaches, diaphoresis and hot flushes with grossly elevated urine catecholamines, normetanephrines and norepinephrine levels, yet normal metanephrines, epinephrine/epinephrine, cortisol and aldosterone levels. Subsequent functional uptake studies and scans identified bilateral adrenal adenomas consistent with phaeochromocytomas. There was no family history of phaeochromocytomas or familial syndromes; however, a targeted genetic analysis for causes of familial phaeochromocytomas identified a heterozygous germline mutation in the VHL gene consistent with Von Hippel-Lindau syndrome. In this case, the identification of the VHL mutation led to careful screening and detection of clinically occult central nervous system hemangioblastomas and pancreatic neuroendocrine tumours. Verified genetic mutations facilitated best practices for long-term surveillance protocols, preconception counselling and screening of blood relatives. The patient responded well to surgical treatment and has ongoing multidisciplinary long-term surveillance.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico , Feocromocitoma/diagnóstico , Doença de von Hippel-Lindau/diagnóstico , Neoplasias das Glândulas Suprarrenais/complicações , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Neoplasias das Glândulas Suprarrenais/cirurgia , Adulto , Meios de Contraste , Diagnóstico Diferencial , Feminino , Aconselhamento Genético , Humanos , Hipertensão/etiologia , Imageamento por Ressonância Magnética , Feocromocitoma/complicações , Feocromocitoma/diagnóstico por imagem , Feocromocitoma/cirurgia , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/diagnóstico por imagem , Doença de von Hippel-Lindau/cirurgia
3.
Aging (Albany NY) ; 8(4): 810-30, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27099939

RESUMO

The Saccharomyces cerevisiae Forkhead Box (Fox) orthologs, Forkheads (Fkh) 1 and 2, are conserved transcription factors required for stress response, cell cycle progression and longevity. These yeast proteins play a key role in mitotic progression through activation of the ubiquitin E3 ligase Anaphase Promoting Complex (APC) via transcriptional control. Here, we used genetic and molecular analyses to demonstrate that the APC E3 activity is necessary for mitotic Fkh1 protein degradation and subsequent cell cycle progression. We report that Fkh1 protein degradation occurs specifically during mitosis, requires APCCdc20 and proteasome activity, and that a stable Fkh1 mutant reduces normal chronological lifespan, increases genomic instability, and increases sensitivity to stress. Our data supports a model whereby cell cycle progression through mitosis and G1 requires the targeted degradation of Fkh1 by the APC. This is significant to many fields as these results impact our understanding of the mechanisms underpinning the control of aging and cancer.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Genoma , Longevidade/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Ciclo Celular/fisiologia , Saccharomyces cerevisiae
4.
PLoS One ; 9(1): e84611, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489651

RESUMO

Thrombin and hypoxia are important players in breast cancer progression. Breast cancers often develop drug resistance, but mechanisms linking thrombin and hypoxia to drug resistance remain unresolved. Our studies using Doxorubicin (DOX) resistant MCF7 breast cancer cells reveals a mechanism linking DOX exposure with hypoxic induction of DOX resistance. Global expression changes between parental and DOX resistant MCF7 cells were examined. Westerns, Northerns and immunocytochemistry were used to validate drug resistance and differentially expressed genes. A cluster of genes involved in the anticoagulation pathway, with Tissue Factor Pathway Inhibitor 1 (TFPI1) the top hit, was identified. Plasmids overexpressing TFPI1 were utilized, and 1% O2 was used to test the effects of hypoxia on drug resistance. Lastly, microarray datasets from patients with drug resistant breast tumors were interrogated for TFPI1 expression levels. TFPI1 protein levels were found elevated in 3 additional DOX resistant cells lines, from humans and rats, indicating evolutionarily conservation of the effect. Elevated TFPI1 in DOX resistant cells was active, as thrombin protein levels were coincidentally low. We observed elevated HIF1α protein in DOX resistant cells, and in cells with forced expression of TFPI1, suggesting TFPI1 induces HIF1α. TFPI1 also induced c-MYC, c-SRC, and HDAC2 protein, as well as DOX resistance in parental cells. Growth of cells in 1% O2 induced elevated HIF1α, BCRP and MDR-1 protein, and these cells were resistant to DOX. Our in vitro results were consistent with in vivo patient datasets, as tumors harboring increased BCRP and MDR-1 expression also had increased TFPI1 expression. Our observations are clinically relevant indicating that DOX treatment induces an anticoagulation cascade, leading to inhibition of thrombin and the expression of HIF1α. This in turn activates a pathway leading to drug resistance.


Assuntos
Doxorrubicina/farmacologia , Lipoproteínas/metabolismo , Animais , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipoproteínas/genética , Células MCF-7 , Células Tumorais Cultivadas
5.
Genetics ; 196(3): 693-709, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361936

RESUMO

Genomic stability, stress response, and nutrient signaling all play critical, evolutionarily conserved roles in lifespan determination. However, the molecular mechanisms coordinating these processes with longevity remain unresolved. Here we investigate the involvement of the yeast anaphase promoting complex (APC) in longevity. The APC governs passage through M and G1 via ubiquitin-dependent targeting of substrate proteins and is associated with cancer and premature aging when defective. Our two-hybrid screen utilizing Apc5 as bait recovered the lifespan determinant Fob1 as prey. Fob1 is unstable specifically in G1, cycles throughout the cell cycle in a manner similar to Clb2 (an APC target), and is stabilized in APC (apc5(CA)) and proteasome (rpn10) mutants. Deletion of FOB1 increased replicative lifespan (RLS) in wild type (WT), apc5(CA), and apc10 cells, and suppressed apc5(CA) cell cycle progression and rDNA recombination defects. Alternatively, increased FOB1 expression decreased RLS in WT cells, but did not reduce the already short apc5(CA) RLS, suggesting an epistatic interaction between apc5(CA) and fob1. Mutation to a putative L-Box (Fob1(E420V)), a Destruction Box-like motif, abolished Fob1 modifications, stabilized the protein, and increased rDNA recombination. Our work provides a mechanistic role played by the APC to promote replicative longevity and genomic stability in yeast.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , DNA Fúngico/metabolismo , DNA Ribossômico/metabolismo , Proteínas Fúngicas/metabolismo , Leveduras/crescimento & desenvolvimento , Ciclossomo-Complexo Promotor de Anáfase/genética , Sítios de Ligação , Ciclo Celular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Instabilidade Genômica , Mutação , Técnicas do Sistema de Duplo-Híbrido , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA