Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(6): 1349-1361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217698

RESUMO

Smoking-related diseases remain a significant public health concern, and heated tobacco products (HTPs) have emerged as a potential alternative to cigarettes. While several studies have confirmed that HTP aerosols contain lower levels of harmful and potentially harmful constituents (HPHCs) than cigarette smoke, less is known about constituents that are intrinsically higher in HTP aerosols. This study provides a comprehensive comparative assessment of an HTP aerosol produced with Tobacco Heating System 2.2 (THS) and comparator cigarette (CC) smoke aiming at identifying all unique or increased compounds in THS aerosol by applying a broad set of LC-MS and GC × GC-MS methods. To focus on differences due to heating versus burning tobacco, confounding factors were minimized by using the same tobacco in both test items and not adding flavorants. Of all analytical features, only 3.5%-corresponding to 31 distinctive compounds-were significantly more abundant in THS aerosol than in CC smoke. A notable subset of these compounds was identified as reaction products of glycerol. The only compound unique to THS aerosol was traced back to its presence in a non-tobacco material in the test item and not a direct product of heating tobacco. Our results demonstrate that heating a glycerol-containing tobacco substrate to the temperatures applied in THS does not introduce new compounds in the resulting aerosol compared to CC smoke which are detectable with the method portfolio applied in this study. Overall, this study contributes to a better understanding of the chemical composition of HTP aerosols and their potential impact on human health.


Assuntos
Fumar Cigarros , Produtos do Tabaco , Humanos , Calefação , Glicerol , Aerossóis/química
2.
Anal Bioanal Chem ; 412(11): 2675-2685, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32072212

RESUMO

A suite of untargeted methods has been applied for the characterization of aerosol from the Tobacco Heating System 2.2 (THS2.2), a heated tobacco product developed by Philip Morris Products S.A. and commercialized under the brand name IQOS®. A total of 529 chemical constituents, excluding water, glycerin, and nicotine, were present in the mainstream aerosol of THS2.2, generated by following the Health Canada intense smoking regimen, at concentrations ≥ 100 ng/item. The majority were present in the particulate phase (n = 402), representing more than 80% of the total mass determined by untargeted screening; a proportion were present in both particulate and gas-vapor phases (39 compounds). The identities for 80% of all chemical constituents (representing > 96% of the total determined mass) were confirmed by the use of authentic analytical reference materials. Despite the uncertainties that are recognized to be associated with aerosol-based untargeted approaches, the reported data remain indicative that the uncharacterized fraction of TPM generated by THS2.2 has been evaluated to the fullest practicable extent. To the best of our knowledge, this work represents the most comprehensive chemical characterization of a heated tobacco aerosol to date. Graphical abstract.


Assuntos
Aerossóis/análise , Produtos do Tabaco/análise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Fumaça/análise , Nicotiana/química
3.
Rapid Commun Mass Spectrom ; 34(2): e8571, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31479554

RESUMO

RATIONALE: For the characterization of the chemical composition of complex matrices such as tobacco smoke, containing more than 6000 constituents, several analytical approaches have to be combined to increase compound coverage across the chemical space. Furthermore, the identification of unknown molecules requiring the implementation of additional confirmatory tools in the absence of reference standards, such as tandem mass spectrometry spectra comparisons and in silico prediction of mass spectra, is a major bottleneck. METHODS: We applied a combination of four chromatographic/ionization techniques (reversed-phase (RP) - heated electrospray ionization (HESI) in both positive (+) and negative (-) modes, RP - atmospheric pressure chemical ionization (APCI) in positive mode, and hydrophilic interaction liquid chromatography (HILIC) - HESI positive) using a Thermo Q Exactive™ liquid chromatography/high-resolution accurate mass spectrometry (LC/HRAM-MS) platform for the analysis of 3R4F-derived smoke. Compound identification was performed by using mass spectral libraries and in silico predicted fragments from multiple integrated databases. RESULTS: A total of 331 compounds with semi-quantitative estimates ≥100 ng per cigarette were identified, which were distributed within the known chemical space of tobacco smoke. The integration of multiple LC/HRAM-MS-based chromatographic/ionization approaches combined with complementary compound identification strategies was key for maximizing the number of amenable compounds and for strengthening the level of identification confidence. A total of 50 novel compounds were identified as being present in tobacco smoke. In the absence of reference MS2 spectra, in silico MS2 spectra prediction gave a good indication for compound class and was used as an additional confirmatory tool for our integrated non-targeted screening (NTS) approach. CONCLUSIONS: This study presents a powerful chemical characterization approach that has been successfully applied for the identification of novel compounds in cigarette smoke. We believe that this innovative approach has general applicability and a huge potential benefit for the analysis of any complex matrices.

5.
Anal Chem ; 85(23): 11216-24, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24160557

RESUMO

Compound identification is widely recognized as a major bottleneck for modern metabolomic approaches and high-throughput nontargeted characterization of complex matrices. To tackle this challenge, an automated platform entitled computer-assisted structure identification (CASI) was designed and developed in order to accelerate and standardize the identification of compound structures. In the first step of the process, CASI automatically searches mass spectral libraries for matches using a NIST MS Search algorithm, which proposes structural candidates for experimental spectra from two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOF-MS) measurements, each with an associated match factor. Next, quantitative structure-property relationship (QSPR) models implemented in CASI predict three specific parameters to enhance the confidence for correct compound identification, which were Kovats Index (KI) for the first dimension (1D) separation, relative retention time for the second dimension separation (2DrelRT) and boiling point (BP). In order to reduce the impact of chromatographic variability on the second dimension retention time, a concept based upon hypothetical reference points from linear regressions of a deuterated n-alkanes reference system was introduced, providing a more stable relative retention time measurement. Predicted values for KI and 2DrelRT were calculated and matched with experimentally derived values. Boiling points derived from 1D separations were matched with predicted boiling points, calculated from the chemical structures of the candidates. As a last step, CASI combines the NIST MS Search match factors (NIST MF) with up to three predicted parameter matches from the QSPR models to generate a combined CASI Score representing the measure of confidence for the identification. Threshold values were applied to the CASI Scores assigned to proposed structures, which improved the accuracy for the classification of true/false positives and true/false negatives. Results for the identification of compounds have been validated, and it has been demonstrated that identification using CASI is more accurate than using NIST MS Search alone. CASI is an easily accessible web-interfaced software platform which represents an innovative, high-throughput system that allows fast and accurate identification of constituents in complex matrices, such as those requiring 2D separation techniques.


Assuntos
Automação Laboratorial/métodos , Desenho Assistido por Computador , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ensaios de Triagem em Larga Escala/métodos , Fumaça/análise , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA