Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13701, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607995

RESUMO

To close the gap between ultra-hygienic research mouse models and the much more environmentally exposed conditions of humans, we have established a system where laboratory mice are raised under a full set of environmental factors present in a naturalistic, farmyard-type habitat-a process we have called feralization. In previous studies we have shown that feralized (Fer) mice were protected against colorectal cancer when compared to conventionally reared laboratory mice (Lab). However, the protective mechanisms remain to be elucidated. Disruption of the protective intestinal barrier is an acknowledged player in colorectal carcinogenesis, and in the current study we assessed colonic mucosal barrier properties in healthy, feralized C57BL/6JRj male mice. While we found no effect of feralization on mucus layer properties, higher expression of genes encoding the mucus components Fcgbp and Clca1 still suggested mucus enforcement due to feralization. Genes encoding other proteins known to be involved in bacterial defense (Itln1, Ang1, Retnlb) and inflammatory mechanisms (Zbp1, Gsdmc2) were also higher expressed in feralized mice, further suggesting that the Fer mice have an altered intestinal mucosal barrier. These findings demonstrate that microbial experience conferred by housing in a farmyard-type environment alters the intestinal barrier properties in mice possibly leading to a more robust protection against disease. Future studies to unravel regulatory roles of feralization on intestinal barrier should aim to conduct proteomic analyses and in vivo performance of the feralized mice intestinal barrier.


Assuntos
Animais de Laboratório , Colo , Fazendas , Abrigo para Animais , Mucosa Intestinal , Laboratórios , Animais , Feminino , Masculino , Camundongos , Animais de Laboratório/microbiologia , Animais de Laboratório/fisiologia , Colo/microbiologia , Colo/fisiologia , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Íleo/microbiologia , Íleo/fisiologia , Mucosa Intestinal/anatomia & histologia , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Camundongos Endogâmicos C57BL
2.
Gut Microbes ; 13(1): 1993581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34751603

RESUMO

Living in a farm environment in proximity to animals is associated with reduced risk of developing allergies and asthma, and has been suggested to protect against other diseases, such as inflammatory bowel disease and cancer. Despite epidemiological evidence, experimental disease models that recapitulate such environments are needed to understand the underlying mechanisms. In this study, we show that feralizing conventional inbred mice by continuous exposure to a livestock farmyard-type environment conferred protection toward colorectal carcinogenesis. Two independent experimental approaches for colorectal cancer induction were used; spontaneous (Apc Min/+ mice on an A/J background) or chemical (AOM/DSS). In contrast to conventionally reared laboratory mice, the feralized mouse gut microbiota structure remained stable and resistant to mutagen- and colitis-induced neoplasia. Moreover, the feralized mice exhibited signs of a more mature immunophenotype, indicated by increased expression of NK and T-cell maturation markers, and a more potent IFN-γ response to stimuli. In our study, hygienically born and raised mice subsequently feralized post-weaning were protected to a similar level as life-long exposed mice, although the greatest effect was seen upon neonatal exposure. Collectively, we show protective implications of a farmyard-type environment on colorectal cancer development and demonstrate the utility of a novel animal modeling approach that recapitulates realistic disease responses in a naturalized mammal.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/prevenção & controle , Ecossistema , Criação de Animais Domésticos , Animais , Carcinogênese , Colo/imunologia , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Fazendas , Microbioma Gastrointestinal , Humanos , Células Matadoras Naturais/imunologia , Camundongos , Linfócitos T/imunologia
3.
Lab Anim Res ; 37(1): 19, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315530

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide and thus mouse models of CRC are of significant value to study the pathogenesis. The Azoxymethane/Dextran sulfate sodium (AOM/DSS) model is a widely used, robust initiation-promotion model for chemical induction of colitis-associated CRC in rodents. However, the dosage of chemicals, treatment regimens and outcome measures vary greatly among studies employing this model. Thus, the aim of this study was to examine an AOM/DSS model involving a reduced (1%) dose of DSS for induction of carcinogenesis in A/J and C57BL/6J (B6) mice. RESULTS: We show that colonic preneoplastic lesions can be reliably detected in A/J and B6 mice by use of a AOM/DSS model involving a single injection of 10 mg/kg AOM followed by three 7-day cycles of a low-dose (1%) DSS administration. Supporting existing evidence of A/J mice exhibiting higher susceptibility to AOM than B6 mice, our AOM/DSS-treated A/J mice developed the highest number of large colonic lesions. Clinical symptoms in both strains subjected to the AOM/DSS treatment did not persist in-between treatment cycles, demonstrating that the animals tolerated the treatment well. CONCLUSIONS: Our findings suggest that a reduced dose of DSS in the AOM/DSS model can be considered in future studies of early phase colorectal carcinogenesis in the A/J and B6 mouse strains using preneoplastic lesions as an outcome measure, and that such regimen may reduce the risk of early trial terminations to accommodate human endpoints. Overall, our data emphasize the importance of devoting attention towards choice of protocol, outcome measures and mouse strain in studies of CRC in mice according to the study purpose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA