Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7997): 194-206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096902

RESUMO

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Assuntos
Endonucleases , Elementos Nucleotídeos Longos e Dispersos , DNA Polimerase Dirigida por RNA , Transcrição Reversa , Humanos , Microscopia Crioeletrônica , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , RNA/genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Cristalografia por Raios X , DNA/biossíntese , DNA/genética , Imunidade Inata , Interferons/biossíntese
2.
Sci Adv ; 8(49): eadd2191, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490335

RESUMO

SARS-CoV-2, a human coronavirus, is the causative agent of the COVID-19 pandemic. Its genome is translated into two large polyproteins subsequently cleaved by viral papain-like protease and main protease (Mpro). Polyprotein processing is essential yet incompletely understood. We studied Mpro-mediated processing of the nsp7-11 polyprotein, whose mature products include cofactors of the viral replicase, and identified the order of cleavages. Integrative modeling based on mass spectrometry (including hydrogen-deuterium exchange and cross-linking) and x-ray scattering yielded a nsp7-11 structural ensemble, demonstrating shared secondary structural elements with individual nsps. The pattern of cross-links and HDX footprint of the C145A Mpro and nsp7-11 complex demonstrate preferential binding of the enzyme active site to the polyprotein junction sites and additional transient contacts to help orient the enzyme on its substrate for cleavage. Last, proteolysis assays were used to characterize the effect of inhibitors/binders on Mpro processing/inhibition using the nsp7-11 polyprotein as substrate.

3.
Sci Adv ; 8(27): eabn9874, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857464

RESUMO

Key proteins of retroviruses and other RNA viruses are translated and subsequently processed from polyprotein precursors by the viral protease (PR). Processing of the HIV Gag-Pol polyprotein yields the HIV structural proteins and enzymes. Structures of the mature enzymes PR, reverse transcriptase (RT), and integrase (IN) aided understanding of catalysis and design of antiretrovirals, but knowledge of the Pol precursor architecture and function before PR cleavage is limited. We developed a system to produce stable HIV-1 Pol and determined its cryo-electron microscopy structure. RT in Pol has a similar arrangement to the mature RT heterodimer, and its dimerization may draw together two PR monomers to activate proteolytic processing. HIV-1 thus may leverage the dimerization interfaces in Pol to regulate assembly and maturation of polyprotein precursors.

4.
Proc Natl Acad Sci U S A ; 119(27): e2200260119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771941

RESUMO

Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.


Assuntos
Antirretrovirais , Descoberta de Drogas , Retrovirus Endógenos , DNA Polimerase Dirigida por RNA , Inibidores da Transcriptase Reversa , Antirretrovirais/química , Antirretrovirais/farmacologia , Retrovirus Endógenos/enzimologia , Retrovirus Endógenos/genética , Genes Virais , Transcriptase Reversa do HIV/química , Humanos , Multimerização Proteica , DNA Polimerase Dirigida por RNA/química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia
5.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452360

RESUMO

In most cases, proteolytic processing of the retroviral Pol portion of the Gag-Pol polyprotein precursor produces protease (PR), reverse transcriptase (RT), and integrase (IN). However, foamy viruses (FVs) express Pol separately from Gag and, when Pol is processed, only the IN domain is released. Here, we report a 2.9 Å resolution crystal structure of the mature PR-RT from prototype FV (PFV) that can carry out both proteolytic processing and reverse transcription but is in a configuration not competent for proteolytic or polymerase activity. PFV PR-RT is monomeric and the architecture of PFV PR is similar to one of the subunits of HIV-1 PR, which is a dimer. There is a C-terminal extension of PFV PR (101-145) that consists of two helices which are adjacent to the base of the RT palm subdomain, and anchors PR to RT. The polymerase domain of PFV RT consists of fingers, palm, thumb, and connection subdomains whose spatial arrangements are similar to the p51 subunit of HIV-1 RT. The RNase H and polymerase domains of PFV RT are connected by flexible linkers. Significant spatial and conformational (sub)domain rearrangements are therefore required for nucleic acid binding. The structure of PFV PR-RT provides insights into the conformational maturation of retroviral Pol polyproteins.


Assuntos
Peptídeo Hidrolases/química , Poliproteínas/química , DNA Polimerase Dirigida por RNA/química , Spumavirus/química , Cristalização , Peptídeo Hidrolases/metabolismo , Poliproteínas/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Transcrição Reversa
6.
Acta Crystallogr D Struct Biol ; 75(Pt 6): 523-527, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31205014

RESUMO

Michael George Rossmann, who made monumental contributions to science, passed away peacefully in West Lafayette, Indiana on 14 May 2019 at the age of 88, following a courageous five-year battle with cancer. Michael was born in Frankfurt, Germany on 30 July 1930. As a young boy, he emigrated to England with his mother just as World War II ignited. Michael was a highly innovative and energetic person, well known for his intensity, persistence and focus in pursuing his research goals. Michael was a towering figure in crystallography as a highly distinguished faculty member at Purdue University for 55 years. Michael made many seminal contributions to crystallography in a career that spanned the entirety of structural biology, beginning in the 1950s at Cambridge where the first protein structures were determined in the laboratories of Max Perutz (hemoglobin, 1960) and John Kendrew (myoglobin, 1958). Michael's work was central in establishing and defining the field of structural biology, which amazingly has described the structures of a vast array of complex biological molecules and assemblies in atomic detail. Knowledge of three-dimensional biological structure has important biomedical significance including understanding the basis of health and disease at the molecular level, and facilitating the discovery of many drugs.


Assuntos
Cristalografia/história , Substâncias Macromoleculares/história , Vírus/ultraestrutura , Distinções e Prêmios , História do Século XX , Humanos , Substâncias Macromoleculares/ultraestrutura
7.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29643235

RESUMO

We tested three compounds for their ability to inhibit the RNase H (RH) and polymerase activities of HIV-1 reverse transcriptase (RT). A high-resolution crystal structure (2.2 Å) of one of the compounds showed that it chelates the two magnesium ions at the RH active site; this prevents the RH active site from interacting with, and cleaving, the RNA strand of an RNA-DNA heteroduplex. The compounds were tested using a variety of substrates: all three compounds inhibited the polymerase-independent RH activity of HIV-1 RT. Time-of-addition experiments showed that the compounds were more potent if they were bound to RT before the nucleic acid substrate was added. The compounds significantly inhibited the site-specific cleavage required to generate the polypurine tract (PPT) RNA primer that initiates the second strand of viral DNA synthesis. The compounds also reduced the polymerase activity of RT; this ability was a result of the compounds binding to the RH active site. These compounds appear to be relatively specific; they do not inhibit either Escherichia coli RNase HI or human RNase H2. The compounds inhibit the replication of an HIV-1-based vector in a one-round assay, and their potencies were only modestly decreased by mutations that confer resistance to integrase strand transfer inhibitors (INSTIs), nucleoside analogs, or nonnucleoside RT inhibitors (NNRTIs), suggesting that their ability to block HIV replication is related to their ability to block RH cleavage. These compounds appear to be useful leads that can be used to develop more potent and specific compounds.IMPORTANCE Despite advances in HIV-1 treatment, drug resistance is still a problem. Of the four enzymatic activities found in HIV-1 proteins (protease, RT polymerase, RT RNase H, and integrase), only RNase H has no approved therapeutics directed against it. This new target could be used to design and develop new classes of inhibitors that would suppress the replication of the drug-resistant variants that have been selected by the current therapeutics.


Assuntos
Replicação do DNA/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Naftiridinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Naftiridinas/química , Conformação Proteica , Inibidores da Transcriptase Reversa/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-28396546

RESUMO

HIV-1 reverse transcriptase (RT) is targeted by multiple drugs. RT mutations that confer resistance to nucleoside RT inhibitors (NRTIs) emerge during clinical use. Q151M and four associated mutations, A62V, V75I, F77L, and F116Y, were detected in patients failing therapies with dideoxynucleosides (didanosine [ddI], zalcitabine [ddC]) and/or zidovudine (AZT). The cluster of the five mutations is referred to as the Q151M complex (Q151Mc), and an RT or virus containing Q151Mc exhibits resistance to multiple NRTIs. To understand the structural basis for Q151M and Q151Mc resistance, we systematically determined the crystal structures of the wild-type RT/double-stranded DNA (dsDNA)/dATP (complex I), wild-type RT/dsDNA/ddATP (complex II), Q151M RT/dsDNA/dATP (complex III), Q151Mc RT/dsDNA/dATP (complex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes. The structures revealed that the deoxyribose rings of dATP and ddATP have 3'-endo and 3'-exo conformations, respectively. The single mutation Q151M introduces conformational perturbation at the deoxynucleoside triphosphate (dNTP)-binding pocket, and the mutated pocket may exist in multiple conformations. The compensatory set of mutations in Q151Mc, particularly F116Y, restricts the side chain flexibility of M151 and helps restore the DNA polymerization efficiency of the enzyme. The altered dNTP-binding pocket in Q151Mc RT has the Q151-R72 hydrogen bond removed and has a switched conformation for the key conserved residue R72 compared to that in wild-type RT. On the basis of a modeled structure of hepatitis B virus (HBV) polymerase, the residues R72, Y116, M151, and M184 in Q151Mc HIV-1 RT are conserved in wild-type HBV polymerase as residues R41, Y89, M171, and M204, respectively; functionally, both Q151Mc HIV-1 and wild-type HBV are resistant to dideoxynucleoside analogs.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Didanosina/uso terapêutico , Produtos do Gene pol/antagonistas & inibidores , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Inibidores da Transcriptase Reversa/uso terapêutico , Zalcitabina/uso terapêutico , Zidovudina/uso terapêutico , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , Vírus da Hepatite B/genética , Humanos , Mutação/genética , Conformação Proteica , Estrutura Quaternária de Proteína
9.
Protein Sci ; 25(1): 46-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26296781

RESUMO

The development of a modified DNA aptamer that binds HIV-1 reverse transcriptase (RT) with ultra-high affinity has enabled the X-ray structure determination of an HIV-1 RT-DNA complex to 2.3 Å resolution without the need for an antibody Fab fragment or RT-DNA cross-linking. The 38-mer hairpin-DNA aptamer has a 15 base-pair duplex, a three-deoxythymidine hairpin loop, and a five-nucleotide 5'-overhang. The aptamer binds RT in a template-primer configuration with the 3'-end positioned at the polymerase active site and has 2'-O-methyl modifications at the second and fourth duplex template nucleotides that interact with the p66 fingers and palm subdomains. This structure represents the highest resolution RT-nucleic acid structure to date. The RT-aptamer complex is catalytically active and can serve as a platform for studying fundamental RT mechanisms and for development of anti-HIV inhibitors through fragment screening and other approaches. Additionally, the structure allows for a detailed look at a unique aptamer design and provides the molecular basis for its remarkably high affinity for RT.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Primers do DNA/química , Transcriptase Reversa do HIV/química , Conformação de Ácido Nucleico , Fármacos Anti-HIV/química , Aptâmeros de Nucleotídeos/metabolismo , Sítios de Ligação , Primers do DNA/genética , Primers do DNA/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Modelos Moleculares , Conformação Proteica , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Moldes Genéticos
10.
Antimicrob Agents Chemother ; 59(12): 7184-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26324274

RESUMO

Although anti-human immunodeficiency virus type 1 (HIV-1) therapies have become more sophisticated and more effective, drug resistance continues to be a major problem. Zidovudine (azidothymidine; AZT) was the first nucleoside reverse transcriptase (RT) inhibitor (NRTI) approved for the treatment of HIV-1 infections and is still being used, particularly in the developing world. This drug targets the conversion of single-stranded RNA to double-stranded DNA by HIV-1 RT. However, resistance to the drug quickly appeared both in viruses replicating in cells in culture and in patients undergoing AZT monotherapy. The primary resistance pathway selects for mutations of T215 that change the threonine to either a tyrosine or a phenylalanine (T215Y/F); this resistance pathway involves an ATP-dependent excision mechanism. The pseudo-sugar ring of AZT lacks a 3' OH; RT incorporates AZT monophosphate (AZTMP), which blocks the end of the viral DNA primer. AZT-resistant forms of HIV-1 RT use ATP in an excision reaction to unblock the 3' end of the primer strand, allowing its extension by RT. The T215Y AZT resistance mutation is often accompanied by two other mutations, M41L and L210W. In this study, the roles of these mutations, in combination with T215Y, were examined to determine whether they affect polymerization and excision by HIV-1 RT. The M41L mutation appears to help restore the DNA polymerization activity of RT containing the T215Y mutation and also enhances AZTMP excision. The L210W mutation plays a similar role, but it enhances excision by RTs that carry the T215Y mutation when ATP is present at a low concentration.


Assuntos
Substituição de Aminoácidos , DNA Viral/química , Transcriptase Reversa do HIV/química , RNA Viral/química , Inibidores da Transcriptase Reversa/química , Zidovudina/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Clonagem Molecular , DNA Viral/genética , DNA Viral/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , HIV-1/genética , Cinética , Modelos Moleculares , Mutação , Fenilalanina/química , Fenilalanina/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade , Treonina/química , Treonina/metabolismo , Tirosina/química , Tirosina/metabolismo , Zidovudina/farmacologia
11.
Top Curr Chem ; 317: 181-200, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21972022

RESUMO

Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Descoberta de Drogas , Infecções por HIV/tratamento farmacológico , HIV/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fármacos Anti-HIV/química , Cristalografia por Raios X , HIV/enzimologia , Protease de HIV/metabolismo , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
12.
Nat Struct Mol Biol ; 17(10): 1202-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20852643

RESUMO

Human immunodeficiency virus (HIV-1) develops resistance to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3' end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA). We determined five crystal structures: wild-type reverse transcriptase-double-stranded DNA (RT-dsDNA)-AZTppppA; AZT-resistant (AZTr; M41L D67N K70R T215Y K219Q) RT-dsDNA-AZTppppA; AZTr RT-dsDNA terminated with AZT at dNTP- and primer-binding sites; and AZTr apo reverse transcriptase. The AMP part of AZTppppA bound differently to wild-type and AZTr reverse transcriptases, whereas the AZT triphosphate part bound the two enzymes similarly. Thus, the resistance mutations create a high-affinity ATP-binding site. The structure of the site provides an opportunity to design inhibitors of AZT-monophosphate excision.


Assuntos
Farmacorresistência Viral/fisiologia , Transcriptase Reversa do HIV/química , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Zidovudina/farmacologia , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , DNA Viral/biossíntese , Desoxirribonucleotídeos/metabolismo , Didesoxinucleotídeos/metabolismo , Desenho de Fármacos , Farmacorresistência Viral/genética , Genes rev , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , HIV-1/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Mutação Puntual , Conformação Proteica , Relação Estrutura-Atividade , Nucleotídeos de Timina/metabolismo , Zidovudina/análogos & derivados , Zidovudina/metabolismo
14.
Int J Biochem Cell Biol ; 40(11): 2410-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18487070

RESUMO

One of the formidable challenges in therapy of infections by human immunodeficiency virus (HIV) is the emergence of drug-resistant variants that attenuate the efficacy of highly active antiretroviral therapy (HAART). We have recently introduced 4'-ethynyl-nucleoside analogs as nucleoside reverse transcriptase inhibitors (NRTIs) that could be developed as therapeutics for treatment of HIV infections. In this study, we present 2'-deoxy-4'-C-ethynyl-2-fluoroadenosine (EFdA), a second generation 4'-ethynyl inhibitor that exerted highly potent activity against wild-type HIV-1 (EC50 approximately 0.07 nM). EFdA retains potency toward many HIV-1 resistant strains, including the multi-drug resistant clone HIV-1A62V/V75I/F77L/F116Y/Q151M. The selectivity index of EFdA (cytotoxicity/inhibitory activity) is more favorable than all approved NRTIs used in HIV therapy. Furthermore, EFdA efficiently inhibited clinical isolates from patients heavily treated with multiple anti-HIV-1 drugs. EFdA appears to be primarily phosphorylated by the cellular 2'-deoxycytidine kinase (dCK) because: (a) the antiviral activity of EFdA was reduced by the addition of dC, which competes nucleosides phosphorylated by the dCK pathway, (b) the antiviral activity of EFdA was significantly reduced in dCK-deficient HT-1080/Ara-Cr cells, but restored after dCK transduction. Further, unlike other dA analogs, EFdA is completely resistant to degradation by adenosine deaminase. Moderate decrease in susceptibility to EFdA is conferred by a combination of three RT mutations (I142V, T165R, and M184V) that result in a significant decrease of viral fitness. Molecular modeling analysis suggests that the M184V/I substitutions may reduce anti-HIV activity of EFdA through steric hindrance between its 4'-ethynyl moiety and the V/I184 beta-branched side chains. The present data suggest that EFdA, is a promising candidate for developing as a therapeutic agent for the treatment of individuals harboring multi-drug resistant HIV variants.


Assuntos
Desoxiadenosinas , Farmacorresistência Viral Múltipla , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Animais , Terapia Antirretroviral de Alta Atividade , Linhagem Celular , Desoxiadenosinas/química , Desoxiadenosinas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Humanos , Modelos Moleculares , Estrutura Molecular , Replicação Viral
15.
Biochemistry ; 46(3): 828-36, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17223704

RESUMO

The resistance of HIV-1 to 3'-azido-3'-deoxythymidine (AZT) involves phosphorolytic excision of chain-terminating AZT-5'-monophosphate (AZTMP). Both pyrophosphate (PPi) and ATP act as excision substrates in vitro, but the intracellular substrate used during replication of AZT-resistant HIV is still unknown. PPi-mediated excision produces AZT-5'-triphosphate (AZTTP), which could be immediately re-used as a substrate for viral DNA chain termination. In contrast, ATP-mediated excision produces the novel compound AZT-(5')-tetraphospho-(5')-adenosine (AZTp4A). Since little is known of the interaction of AZTp4A with HIV-1 RT, we carried out kinetic and molecular modeling studies to probe this. AZTp4A was found to be a potent inhibitor of HIV-1 RT-catalyzed DNA synthesis and of both ATP- and PPi-mediated AZTMP excision. AZTp4A is in fact an excellent chain-terminating substrate for AZT-resistant RT-catalyzed DNA synthesis, better than AZTTP (k(pol)/Kd = 6.2 and 11.9 for AZTTP and AZTp4A, respectively). The affinity of AZT-resistant HIV-1 RT for AZTp4A is at least 30,000-fold greater than that for the excision substrate ATP and approximately 10-fold greater than that for AZTTP. Dissociation of newly formed AZTp4A from RT may therefore provide a significant rate-limiting step for continued HIV-1 DNA synthesis. Our studies show that the products of PPi- and ATP-mediated excision of chain-terminating AZTMP (AZTTP and AZTp4A, respectively) are both potent chain-terminating substrates for HIV-1 RT, suggesting that there is no obvious benefit to HIV using ATP instead of PPi as the excision substrate.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Nucleotídeos de Timina/metabolismo , Zidovudina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Didesoxinucleotídeos , Cinética , Zidovudina/metabolismo , Zidovudina/farmacologia
16.
J Mol Biol ; 365(1): 77-89, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17056061

RESUMO

Lys103Asn and Tyr181Cys are the two mutations frequently observed in patients exposed to various non-nucleoside reverse transcriptase inhibitor drugs (NNRTIs). Human immunodeficiency virus (HIV) strains containing both reverse transcriptase (RT) mutations are resistant to all of the approved NNRTI drugs. We have determined crystal structures of Lys103Asn/Tyr181Cys mutant HIV-1 RT with and without a bound non-nucleoside inhibitor (HBY 097, (S)-4-isopropoxycarbonyl-6-methoxy-3-(methylthio-methyl)-3,4-dihydroquinoxalin-2(1H)-thione) at 3.0 A and 2.5 A resolution, respectively. The structure of the double mutant RT/HBY 097 complex shows a rearrangement of the isopropoxycarbonyl group of HBY 097 compared to its binding with wild-type RT. HBY 097 makes a hydrogen bond with the thiol group of Cys181 that helps the drug retain potency against the Tyr181Cys mutation. The structure of the unliganded double mutant HIV-1 RT showed that Lys103Asn mutation facilitates coordination of a sodium ion with Lys101 O, Asn103 N and O(delta1), Tyr188 O(eta), and two water molecules. The formation of the binding pocket requires the removal of the sodium ion. Although the RT alone and the RT/HBY 097 complex were crystallized in the presence of ATP, only the RT has an ATP coordinated with two Mn(2+) at the polymerase active site. The metal coordination mimics a reaction intermediate state in which complete octahedral coordination was observed for both metal ions. Asp186 coordinates at an axial position whereas the carboxylates of Asp110 and Asp185 are in the planes of coordination of both metal ions. The structures provide evidence that NNRTIs restrict the flexibility of the YMDD loop and prevent the catalytic aspartate residues from adopting their metal-binding conformations.


Assuntos
Trifosfato de Adenosina/metabolismo , Fármacos Anti-HIV/metabolismo , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Substituição de Aminoácidos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Farmacorresistência Viral , Transcriptase Reversa do HIV/antagonistas & inibidores , Humanos , Manganês/metabolismo , Modelos Moleculares , Conformação Molecular , Mutação , Conformação Proteica , Quinoxalinas/química , Quinoxalinas/metabolismo , Quinoxalinas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/metabolismo , Inibidores da Transcriptase Reversa/farmacologia
17.
ACS Chem Biol ; 1(11): 702-12, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17184135

RESUMO

The rapid emergence of drug-resistant variants of human immunodeficiency virus, type 1 (HIV-1), has limited the efficacy of anti-acquired immune deficiency syndrome (AIDS) treatments, and new lead compounds that target novel binding sites are needed. We have determined the 3.15 A resolution crystal structure of HIV-1 reverse transcriptase (RT) complexed with dihydroxy benzoyl naphthyl hydrazone (DHBNH), an HIV-1 RT RNase H (RNH) inhibitor (RNHI). DHBNH is effective against a variety of drug-resistant HIV-1 RT mutants. While DHBNH has little effect on most aspects of RT-catalyzed DNA synthesis, at relatively high concentrations it does inhibit the initiation of RNA-primed DNA synthesis. Although primarily an RNHI, DHBNH binds >50 A away from the RNH active site, at a novel site near both the polymerase active site and the non-nucleoside RT inhibitor (NNRTI) binding pocket. When DHBNH binds, both Tyr181 and Tyr188 remain in the conformations seen in unliganded HIV-1 RT. DHBNH interacts with conserved residues (Asp186, Trp229) and has substantial interactions with the backbones of several less well-conserved residues. On the basis of this structure, we designed substituted DHBNH derivatives that interact with the NNRTI-binding pocket. These compounds inhibit both the polymerase and RNH activities of RT.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Inibidores da Transcriptase Reversa/química , Ribonuclease H/antagonistas & inibidores , Linhagem Celular Tumoral , Transcriptase Reversa do HIV/metabolismo , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/fisiologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/metabolismo , Relação Estrutura-Atividade
18.
Virology ; 348(2): 378-88, 2006 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16473384

RESUMO

The RNase H cleavages that generate and remove the polypurine tract (PPT) primer during retroviral reverse transcription must be specific to generate linear viral DNAs that are suitable substrates for the viral integrase. To determine if specific contacts between reverse transcriptase (RT) and the PPT are a critical factor in determining the cleavage specificity of RNase H, we made HIV-1 viruses containing mutations in RT and the PPT at the locations of critical contacts between the protein and the nucleic acid. The effects on titer and RNase H cleavage suggest that combining mutations in RT with mutations in the PPT affect the structure of the protein of the RT/nucleic acid complex in ways that affect the specificity and the rate of PPT cleavage. In contrast, the mutations in the PPT (alone) and RT (alone) affect the specificity of PPT cleavage but have much less effect on the overall rate of cleavage.


Assuntos
Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Mutação , RNA Viral/genética , RNA Viral/metabolismo , Ribonuclease H/metabolismo , Sequência de Bases , Linhagem Celular , DNA Viral/biossíntese , DNA Viral/genética , Transcriptase Reversa do HIV/química , Humanos , Cinética , Substâncias Macromoleculares , Mutagênese Sítio-Dirigida , RNA Viral/química , Especificidade por Substrato , Transfecção
19.
J Med Chem ; 48(6): 1901-9, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15771434

RESUMO

Ideally, an anti-HIV drug should (1) be highly active against wild-type and mutant HIV without allowing breakthrough; (2) have high oral bioavailability and long elimination half-life, allowing once-daily oral treatment at low doses; (3) have minimal adverse effects; and (4) be easy to synthesize and formulate. R278474, a new diarylpyrimidine (DAPY) non-nucleoside reverse transcriptase inhibitor (NNRTI), appears to meet these criteria and to be suitable for high compliance oral treatment of HIV-1 infection. The discovery of R278474 was the result of a coordinated multidisciplinary effort involving medicinal chemists, virologists, crystallographers, molecular modelers, toxicologists, analytical chemists, pharmacists, and many others.


Assuntos
Fármacos Anti-HIV , Nitrilas , Pirimidinas , Administração Oral , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Disponibilidade Biológica , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Genoma Viral , HIV/genética , HIV/isolamento & purificação , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Comunicação Interdisciplinar , Modelos Moleculares , Estrutura Molecular , Mutação , Nitrilas/síntese química , Nitrilas/química , Nitrilas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Rilpivirina
20.
J Biol Chem ; 280(17): 17093-100, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15728574

RESUMO

The small GTPase Rheb displays unique biological and biochemical properties different from other small GTPases and functions as an important mediator between the tumor suppressor proteins TSC1 and TSC2 and the mammalian target of rapamycin to stimulate cell growth. We report here the three-dimensional structures of human Rheb in complexes with GDP, GTP, and GppNHp (5'-(beta,gamma-imide)triphosphate), which reveal novel structural features of Rheb and provide a molecular basis for its distinct properties. During GTP/GDP cycling, switch I of Rheb undergoes conformational change while switch II maintains a stable, unusually extended conformation, which is substantially different from the alpha-helical conformation seen in other small GTPases. The unique switch II conformation results in a displacement of Gln64 (equivalent to the catalytic Gln61 of Ras), making it incapable of participating in GTP hydrolysis and thus accounting for the low intrinsic GTPase activity of Rheb. This rearrangement also creates space to accommodate the side chain of Arg15, avoiding its steric hindrance with the catalytic residue and explaining its noninvolvement in GTP hydrolysis. Unlike Ras, the phosphate moiety of GTP in Rheb is shielded by the conserved Tyr35 of switch I, leading to the closure of the GTP-binding site, which appears to prohibit the insertion of a potential arginine finger from its GTPase-activating protein. Taking the genetic, biochemical, biological, and structural data together, we propose that Rheb forms a new group of the Ras/Rap subfamily and uses a novel GTP hydrolysis mechanism that utilizes Asn1643 of the tuberous sclerosis complex 2 GTPase-activating protein domain instead of Gln64 of Rheb as the catalytic residue.


Assuntos
GTP Fosfo-Hidrolases/química , Proteínas Monoméricas de Ligação ao GTP/química , Neuropeptídeos/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Arginina/química , Asparagina/química , Sítios de Ligação , Domínio Catalítico , Proliferação de Células , Cristalografia por Raios X , Bases de Dados de Proteínas , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuropeptídeos/fisiologia , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Serina-Treonina Quinases TOR , Esclerose Tuberosa/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Difração de Raios X , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA