Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38562906

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 x 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement: Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.

2.
Nucleic Acids Res ; 50(20): 11775-11798, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399514

RESUMO

The enteroviral 2C protein is a therapeutic target, but the absence of a mechanistic framework for this enzyme limits our understanding of inhibitor mechanisms. Here, we use poliovirus 2C and a derivative thereof to elucidate the first biochemical mechanism for this enzyme and confirm the applicability of this mechanism to other members of the enterovirus genus. Our biochemical data are consistent with a dimer forming in solution, binding to RNA, which stimulates ATPase activity by increasing the rate of hydrolysis without impacting affinity for ATP substantially. Both RNA and DNA bind to the same or overlapping site on 2C, driven by the phosphodiester backbone, but only RNA stimulates ATP hydrolysis. We propose that RNA binds to 2C driven by the backbone, with reorientation of the ribose hydroxyls occurring in a second step to form the catalytically competent state. 2C also uses a two-step mechanism for binding to ATP. Initial binding is driven by the α and ß phosphates of ATP. In the second step, the adenine base and other substituents of ATP are used to organize the active site for catalysis. These studies provide the first biochemical description of determinants driving specificity and catalytic efficiency of a picornaviral 2C ATPase.


Assuntos
Adenosina Trifosfatases , RNA , Adenosina Trifosfatases/metabolismo , RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas de Transporte/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Cinética , Ligação Proteica , Sítios de Ligação
3.
Elife ; 102021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617885

RESUMO

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.


To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a 'polymerase' protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Nucleotídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Linhagem Celular , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Modelos Teóricos , Nucleotídeos/metabolismo , RNA Viral , SARS-CoV-2/enzimologia , Processos Estocásticos , Replicação Viral/efeitos dos fármacos
4.
J Biol Chem ; 294(45): 16897-16907, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31575662

RESUMO

The 2'-C-methyl ribonucleosides are nucleoside analogs representing an important class of antiviral agents, especially against positive-strand RNA viruses. Their value is highlighted by the highly successful anti-hepatitis C drug sofosbuvir. When appropriately phosphorylated, these nucleotides are successfully incorporated into RNA by the virally encoded RNA-dependent RNA polymerase (RdRp). This activity prevents further RNA extension, but the mechanism is poorly characterized. Previously, we had identified NMR signatures characteristic of formation of RdRp-RNA binary and RdRp-RNA-NTP ternary complexes for the poliovirus RdRp, including an open-to-closed conformational change necessary to prepare the active site for catalysis of phosphoryl transfer. Here we used these observations as a framework for interpreting the effects of 2'-C-methyl adenosine analogs on RNA chain extension in solution-state NMR spectroscopy experiments, enabling us to gain additional mechanistic insights into 2'-C-methyl ribonucleoside-mediated RNA chain termination. Contrary to what has been proposed previously, poliovirus RdRp that was bound to RNA with an incorporated 2'-C-methyl nucleotide could still bind to the next incoming NTP. Our results also indicated that incorporation of the 2'-C-methyl nucleotide does not disrupt RdRp-RNA interactions and does not prevent translocation. Instead, incorporation of the 2'-C-methyl nucleotide blocked closure of the RdRp active site upon binding of the next correct incoming NTP, which prevented further nucleotide addition. We propose that other nucleotide analogs that act as nonobligate chain terminators may operate through a similar mechanism.


Assuntos
Domínio Catalítico , Nucleotídeos/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Sequência de Bases , Ligantes , Metilação , Modelos Moleculares , RNA Viral/química , RNA Viral/metabolismo , Replicação Viral/genética
5.
Nature ; 558(7711): 610-614, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925952

RESUMO

Viral infections continue to represent major challenges to public health, and an enhanced mechanistic understanding of the processes that contribute to viral life cycles is necessary for the development of new therapeutic strategies 1 . Viperin, a member of the radical S-adenosyl-L-methionine (SAM) superfamily of enzymes, is an interferon-inducible protein implicated in the inhibition of replication of a broad range of RNA and DNA viruses, including dengue virus, West Nile virus, hepatitis C virus, influenza A virus, rabies virus 2 and HIV3,4. Viperin has been suggested to elicit these broad antiviral activities through interactions with a large number of functionally unrelated host and viral proteins3,4. Here we demonstrate that viperin catalyses the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously undescribed biologically relevant molecule, via a SAM-dependent radical mechanism. We show that mammalian cells expressing viperin and macrophages stimulated with IFNα produce substantial quantities of ddhCTP. We also establish that ddhCTP acts as a chain terminator for the RNA-dependent RNA polymerases from multiple members of the Flavivirus genus, and show that ddhCTP directly inhibits replication of Zika virus in vivo. These findings suggest a partially unifying mechanism for the broad antiviral effects of viperin that is based on the intrinsic enzymatic properties of the protein and involves the generation of a naturally occurring replication-chain terminator encoded by mammalian genomes.


Assuntos
Antivirais/metabolismo , Citidina Trifosfato/metabolismo , Genoma Humano/genética , Proteínas/genética , Proteínas/metabolismo , Terminação da Transcrição Genética , Animais , Antivirais/química , Chlorocebus aethiops , Citidina Trifosfato/biossíntese , Citidina Trifosfato/química , Células HEK293 , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleotídeos , Especificidade por Substrato , Células Vero , Zika virus/enzimologia , Zika virus/metabolismo
6.
PLoS Pathog ; 14(4): e1007036, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29702686

RESUMO

At the culmination of poliovirus (PV) multiplication, membranes are observed that contain phosphatidylinositol-4-phosphate (PI4P) and appear as vesicular clusters in cross section. Induction and remodeling of PI4P and membranes prior to or concurrent with genome replication has not been well studied. Here, we exploit two PV mutants, termed EG and GG, which exhibit aberrant proteolytic processing of the P3 precursor that substantially delays the onset of genome replication and/or impairs virus assembly, to illuminate the pathway of formation of PV-induced membranous structures. For WT PV, changes to the PI4P pool were observed as early as 30 min post-infection. PI4P remodeling occurred even in the presence of guanidine hydrochloride, a replication inhibitor, and was accompanied by formation of membrane tubules throughout the cytoplasm. Vesicular clusters appeared in the perinuclear region of the cell at 3 h post-infection, a time too slow for these structures to be responsible for genome replication. Delays in the onset of genome replication observed for EG and GG PVs were similar to the delays in virus-induced remodeling of PI4P pools, consistent with PI4P serving as a marker of the genome-replication organelle. GG PV was unable to convert virus-induced tubules into vesicular clusters, perhaps explaining the nearly 5-log reduction in infectious virus produced by this mutant. Our results are consistent with PV inducing temporally distinct membranous structures (organelles) for genome replication (tubules) and virus assembly (vesicular clusters). We suggest that the pace of formation, spatiotemporal dynamics, and the efficiency of the replication-to-assembly-organelle conversion may be set by both the rate of P3 polyprotein processing and the capacity for P3 processing to yield 3AB and/or 3CD proteins.


Assuntos
Membrana Celular/química , Organelas/virologia , Fosfatos de Fosfatidilinositol/metabolismo , Poliomielite/virologia , Poliovirus/patogenicidade , Proteínas Virais/metabolismo , Replicação Viral , Membrana Celular/metabolismo , Genoma Viral , Células HeLa , Humanos , Mutação , Fosfatos de Fosfatidilinositol/química , Poliomielite/genética , Poliomielite/metabolismo , Poliovirus/genética , Análise Espaço-Temporal , Proteínas Virais/genética , Montagem de Vírus
7.
Cell Rep ; 21(6): 1692-1704, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117571

RESUMO

We have developed a high-throughput, microfluidics-based platform to perform kinetic analysis of viral infections in individual cells. We have analyzed thousands of individual poliovirus infections while varying experimental parameters, including multiplicity of infection, cell cycle, viral genotype, and presence of a drug. We make several unexpected observations masked by population-based experiments: (1) viral and cellular factors contribute uniquely and independently to viral infection kinetics; (2) cellular factors cause wide variation in replication start times; and (3) infections frequently begin later and replication occurs faster than predicted by population measurements. We show that mutational load impairs interaction of the viral population with the host, delaying replication start times and explaining the attenuated phenotype of a mutator virus. We show that an antiviral drug can selectively extinguish the most-fit members of the viral population. Single-cell virology facilitates discovery and characterization of virulence determinants and elucidation of mechanisms of drug action eluded by population methods.


Assuntos
Dispositivos Lab-On-A-Chip/virologia , Poliovirus/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Antivirais/farmacologia , Guanidina/farmacologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Microscopia de Fluorescência , Análise de Célula Única , Imagem com Lapso de Tempo , Replicação Viral/efeitos dos fármacos
8.
PLoS Pathog ; 13(5): e1006375, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28545059

RESUMO

Positive-strand RNA virus infections can induce the stress-related unfolded protein response (UPR) in host cells. This study found that enterovirus A71 (EVA71) utilizes host UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1), a key endoplasmic reticulum protein (ER) involved in UPR, to enhance viral replication and virulence. EVA71 forms replication complexes (RCs) on cellular membranes that contain a mix of host and viral proteins to facilitate viral replication, but the components and processes involved in the assembly and function of RCs are not fully understood. Using EVA71 as a model, this study found that host UGGT1 and viral 3D polymerase co-precipitate along with other factors on membranous replication complexes to enhance viral replication. Increased UGGT1 levels elevated viral growth rates, while viral pathogenicity was observed to be lower in heterozygous knockout mice (Uggt1 +/- mice). These findings provide important insight on the role of UPR and host UGGT1 in regulating RNA virus replication and pathogenicity.


Assuntos
Enterovirus Humano A/genética , Glucosiltransferases/genética , Replicação Viral/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Retículo Endoplasmático/enzimologia , Enterovirus Humano A/patogenicidade , Enterovirus Humano A/fisiologia , Glucosiltransferases/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Knockout , RNA Viral/análise , RNA Viral/genética , Resposta a Proteínas não Dobradas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética
9.
J Biol Chem ; 292(9): 3810-3826, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100782

RESUMO

The nucleotide incorporation fidelity of the viral RNA-dependent RNA polymerase (RdRp) is important for maintaining functional genetic information but, at the same time, is also important for generating sufficient genetic diversity to escape the bottlenecks of the host's antiviral response. We have previously shown that the structural dynamics of the motif D loop are closely related to nucleotide discrimination. Previous studies have also suggested that there is a reorientation of the triphosphate of the incoming nucleotide, which is essential before nucleophilic attack from the primer RNA 3'-hydroxyl. Here, we have used 31P NMR with poliovirus RdRp to show that the binding environment of the triphosphate is different when correct versus incorrect nucleotide binds. We also show that amino acid substitutions at residues known to interact with the triphosphate can alter the binding orientation/environment of the nucleotide, sometimes lead to protein conformational changes, and lead to substantial changes in RdRp fidelity. The analyses of other fidelity variants also show that changes in the triphosphate binding environment are not always accompanied by changes in the structural dynamics of the motif D loop or other regions known to be important for RdRp fidelity, including motif B. Altogether, our studies suggest that the conformational changes in motifs B and D, and the nucleoside triphosphate reorientation represent separable, "tunable" fidelity checkpoints.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Nucleotídeos/genética , Polifosfatos/química , RNA Viral/genética , Proteínas Virais/química , Motivos de Aminoácidos , Domínio Catalítico , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Nucleotídeos/química , Poliovirus/enzimologia , Poliovirus/genética , Ligação Proteica , Conformação Proteica , RNA Polimerase Dependente de RNA/química
10.
Oncotarget ; 7(45): 72395-72414, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27590350

RESUMO

Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Mitocondriais , Genes myc , Neoplasias/genética , Animais , Linhagem Celular Tumoral , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc , Espécies Reativas de Oxigênio/metabolismo , Transfecção
11.
Toxicol Sci ; 153(2): 396-408, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27466212

RESUMO

BMS-986094, the prodrug of a guanosine nucleotide analogue (2'-C-methylguanosine), was withdrawn from clinical trials due to serious safety issues. Nonclinical investigative studies were conducted as a follow up to evaluate the potential for BMS-986094-related mitochondrial-toxicity. In vitro, BMS-986094 was applied to human hepatoma cells (HepG2 and Huh-7) or cardiomyocytes (hiPSCM) up to 19 days to assess mitochondrial DNA content and specific gene expression. There were no mitochondrial DNA changes at concentrations ≤10 µM. Transcriptional effects, such as reductions in Huh-7 MT-ND1 and MT-ND5 mRNA content and hiPSCM MT-ND1, MT-COXII, and POLRMT protein expression levels, occurred only at cytotoxic concentrations (≥10 µM) suggesting these transcriptional effects were a consequence of the observed toxicity. Additionally, BMS-986094 has a selective weak affinity for inhibition of RNA polymerases as opposed to DNA polymerases. In vivo, BMS-986094 was given orally to cynomolgus monkeys for 3 weeks or 1 month at doses of 15 or 30 mg/kg/day. Samples of heart and kidney were collected for assessment of mitochondrial respiration, mitochondrial DNA content, and levels of high energy substrates. Although pronounced cardiac and renal toxicities were observed in some monkeys at 30 mg/kg/day treated for 3-4 weeks, there were no changes in mitochondrial DNA content or ATP/GTP levels. Collectively, these data suggest that BMS-986094 is not a direct mitochondrial toxicant.


Assuntos
DNA Mitocondrial/efeitos dos fármacos , Guanosina Monofosfato/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/biossíntese , DNA Mitocondrial/fisiologia , Relação Dose-Resposta a Droga , Feminino , Guanosina Monofosfato/metabolismo , Guanosina Monofosfato/toxicidade , Guanosina Trifosfato/metabolismo , Coração/efeitos dos fármacos , Testes de Função Cardíaca , Humanos , Inosina Monofosfato/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Testes de Função Renal , Macaca fascicularis , Masculino
12.
Nucleic Acids Res ; 44(14): 6883-95, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27317698

RESUMO

Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process.


Assuntos
Enterovirus/enzimologia , Enterovirus/genética , RNA Polimerase Dependente de RNA/metabolismo , Recombinação Genética , Animais , Sequência de Bases , Bioensaio , Replicação do DNA , DNA Intergênico/genética , Genoma Viral , Células HeLa , Humanos , Camundongos , Mutação/genética , Nucleotídeos/metabolismo , Poliovirus/genética , RNA Polimerase Dependente de RNA/genética , Moldes Genéticos , Replicação Viral
13.
Structure ; 24(4): 509-517, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27050688

RESUMO

The 3C protein is a master regulator of the picornaviral infection cycle, responsible for both cleaving viral and host proteins, and interacting with genomic RNA replication elements. Here we use nuclear magnetic resonance spectroscopy and molecular dynamics simulations to show that 3C is conformationally dynamic across multiple timescales. Binding of peptide and RNA lead to structural dynamics changes at both the protease active site and the RNA-binding site, consistent with these sites being dynamically coupled. Indeed, binding of RNA influences protease activity, and likewise, interactions at the active site affect RNA binding. We propose that RNA and peptide binding re-shapes the conformational energy landscape of 3C to regulate subsequent functions, including formation of complexes with other viral proteins. The observed channeling of the 3C energy landscape may be important for regulation of the viral infection cycle.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Peptídeos/metabolismo , Picornaviridae/enzimologia , RNA/metabolismo , Sítios de Ligação , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Picornaviridae/química , Ligação Proteica , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo
14.
Methods Mol Biol ; 1351: 199-210, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26530684

RESUMO

Mitochondrial gene expression is essential in all organisms. Our understanding of mitochondrial transcription on a biochemical level has been limited by the inability to purify the individual protein components involved in mitochondrial gene expression. Recently, new systems have been identified that permit purification of these proteins from bacteria. However, the generalizability of these systems is not clear. Here, we have applied the technology from the Cameron lab to express and purify mitochondrial RNA polymerase and transcription factor A from Drosophila melanogaster. We show that the use of SUMO system to produce SUMO fusion proteins in bacteria is effective not only for the human and mouse proteins, but also for the fly proteins. The application of this system to produce the mitochondrial proteins from other organisms should permit detailed understanding of mitochondrial transcription from any organism.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Proteínas de Drosophila/genética , RNA/biossíntese , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/genética , Animais , Bactérias/genética , Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , RNA Polimerases Dirigidas por DNA/biossíntese , Proteínas de Drosophila/biossíntese , Drosophila melanogaster , Mitocôndrias/genética , RNA/genética , RNA Mitocondrial , Fatores de Transcrição/biossíntese , Transcrição Gênica/genética
15.
J Biol Chem ; 289(35): 24397-416, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25031324

RESUMO

The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using (15)N-, (13)C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome.


Assuntos
Hepacivirus/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteoma , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Primers do DNA , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Dados de Sequência Molecular , Fosforilação , Reação em Cadeia da Polimerase , RNA Viral/genética , Espectrometria de Massas em Tandem , Replicação Viral
16.
J Mol Biol ; 426(14): 2580-93, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24813120

RESUMO

In bacteriophages of the cystovirus family, the polymerase complex (PX) encodes a 75-kDa RNA-directed RNA polymerase (P2) that transcribes the double-stranded RNA genome. Also a constituent of the PX is the essential protein P7 that, in addition to accelerating PX assembly and facilitating genome packaging, plays a regulatory role in transcription. Deletion of P7 from the PX leads to aberrant plus-strand synthesis suggesting its influence on the transcriptase activity of P2. Here, using solution NMR techniques and the P2 and P7 proteins from cystovirus ϕ12, we demonstrate their largely electrostatic interaction in vitro. Chemical shift perturbations on P7 in the presence of P2 suggest that this interaction involves the dynamic C-terminal tail of P7, more specifically an acidic cluster therein. Patterns of chemical shift changes induced on P2 by the P7 C-terminus resemble those seen in the presence of single-stranded RNA suggesting similarities in binding. This association between P2 and P7 reduces the affinity of the former toward template RNA and results in its decreased activity both in de novo RNA synthesis and in extending a short primer. Given the presence of C-terminal acidic tracts on all cystoviral P7 proteins, the electrostatic nature of the P2/P7 interaction is likely conserved within the family and could constitute a mechanism through which P7 regulates transcription in cystoviruses.


Assuntos
Cystoviridae/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Cystoviridae/química , Cystoviridae/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , Proteínas Virais/genética
17.
PLoS Pathog ; 8(11): e1003030, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166498

RESUMO

Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2'-C-methyl, 4'-methyl and 4'-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2'-C-methyl, 4'-methyl and 4'-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.


Assuntos
Antivirais/farmacologia , Núcleo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Hepacivirus/metabolismo , Mitocôndrias/metabolismo , RNA Polimerase II/metabolismo , Ribonucleosídeos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Antivirais/efeitos adversos , Bovinos , Linhagem Celular , Hepatite C/tratamento farmacológico , Hepatite C/enzimologia , RNA Viral/biossíntese , Ribonucleosídeos/efeitos adversos
18.
Nucleic Acids Res ; 38(4): 1312-24, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19969541

RESUMO

RNA helicases function in numerous aspects of RNA biology. These enzymes are RNA-stimulated ATPases that translocate on RNA and unwind or remodel structured RNA in an ATP-dependent fashion. How ATP and the ATPase cycle fuel the work performed by helicases is not completely clear. The hepatitis C virus RNA helicase, NS3, is an important model system for this class of enzymes. NS3 binding to a single-/double-strand RNA or DNA junction leads to ATP-independent melting of the duplex and formation of a complex capable of ATP-dependent unwinding by using a spring-loaded mechanism. We have established an RNA substrate for NS3 that can be unwound in a single sub-step. Our studies are consistent with a model in which a single ATP binding and/or hydrolysis event sets the unwinding spring and phosphate dissociation contributes to release of the spring, thereby driving the power stroke used for unwinding.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , Cinética , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Fosfatos/metabolismo , Ligação Proteica
19.
J Virol ; 83(18): 9370-87, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19587035

RESUMO

A poliovirus (PV) mutant (termed GG), which is incapable of producing 3AB, VPg, and 3CD proteins due to a defective cleavage site between the 3B and 3C proteins, replicated, producing 3BC-linked RNA rather than the VPg-linked RNA produced by the wild type (WT). GG PV RNA is quasi-infectious. The yield of infectious GG PV relative to replicated RNA is reduced by almost 5 logs relative to that of WT PV. Proteolytic activity required for polyprotein processing is normal for the GG mutant. 3BC-linked RNA can be encapsidated as efficiently as VPg-linked RNA. However, a step after genome replication but preceding virus assembly that is dependent on 3CD and/or 3AB proteins limits production of infectious GG PV. This step may involve release of replicated genomes from replication complexes. A pseudorevertant (termed EG) partially restored cleavage at the 3B-3C cleavage site. The reduced rate of formation of 3AB and 3CD caused corresponding reductions in the observed rate of genome replication and infectious virus production by EG PV without impacting the final yield of replicated RNA or infectious virus relative to that of WT PV. Using EG PV, we showed that genome replication and encapsidation were distinct steps in the multiplication cycle. Ectopic expression of 3CD protein reversed the genome replication phenotype without alleviating the infectious-virus production phenotype. This is the first report of a trans-complementable function for 3CD for any picornavirus. This observation supports an interaction between 3CD protein and viral and/or host factors that is critical for genome replication, perhaps formation of replication complexes.


Assuntos
Genoma Viral , Poliovirus/genética , Montagem de Vírus , Replicação Viral/genética , Humanos , Mutação , Poliproteínas , RNA Viral , Proteínas Virais
20.
Protein Expr Purif ; 57(2): 261-70, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17997327

RESUMO

We report here the first biochemical and structural characterization of the respiratory syncytial virus (RSV) NS1 protein. We have used a pET-ubiquitin expression system to produce respiratory syncytial virus (RSV) NS1 protein in E. coli that contains a hexahistidine-tag on either the amino- or carboxyl-terminus (His(6)-NS1 and NS1-His(6), respectively). We have been able to isolate milligram quantities of highly purified His(6)-NS1 and NS1-His(6) by nickel affinity chromatography. Generation of recombinant RSV indicated that addition of the hexahistidine tag to the C-terminus of NS1 slightly decreased viral replication competence whereas addition of the tag to the N-terminus had no observable effect. Therefore, we performed a comprehensive biochemical and biophysical characterization on His(6)-NS1. His(6)-NS1 is monodisperse in solution as determined by dynamic light scattering analysis. Both gel filtration and analytical ultracentrifugation showed that His(6)-NS1 is predominantly a monomer. In agreement with theoretical predictions, circular dichroism spectroscopy showed that His(6)-NS1 contains 21% alpha-helices, 34% beta-sheets, and 45% undefined structure. Immunization with purified His(6)-NS1 generated an antiserum that specifically recognizes NS1 by immunoprecipitation from HEp-2 cells infected by RSV, indicating that His(6)-NS1 resembles native NS1. The availability of purified RSV NS1 will permit biochemical and structural investigations providing insight into the function of NS1 in viral replication and interferon antagonism.


Assuntos
Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vírus Sincicial Respiratório Humano/química , Proteínas não Estruturais Virais/isolamento & purificação , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Cromatografia em Gel , Dicroísmo Circular , Escherichia coli , Histidina/metabolismo , Humanos , Soros Imunes , Luz , Oligopeptídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Espalhamento de Radiação , Ultracentrifugação , Proteínas não Estruturais Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA