Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(739): eadk9109, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507469

RESUMO

Myasthenia gravis (MG) is a neuromuscular disease that results in compromised transmission of electrical signals at the neuromuscular junction (NMJ) from motor neurons to skeletal muscle fibers. As a result, patients with MG have reduced skeletal muscle function and present with symptoms of severe muscle weakness and fatigue. ClC-1 is a skeletal muscle specific chloride (Cl-) ion channel that plays important roles in regulating neuromuscular transmission and muscle fiber excitability during intense exercise. Here, we show that partial inhibition of ClC-1 with an orally bioavailable small molecule (NMD670) can restore muscle function in rat models of MG and in patients with MG. In severely affected MG rats, ClC-1 inhibition enhanced neuromuscular transmission, restored muscle function, and improved mobility after both single and prolonged administrations of NMD670. On this basis, NMD670 was progressed through nonclinical safety pharmacology and toxicology studies, leading to approval for testing in clinical studies. After successfully completing phase 1 single ascending dose in healthy volunteers, NMD670 was tested in patients with MG in a randomized, placebo-controlled, single-dose, three-way crossover clinical trial. The clinical trial evaluated safety, pharmacokinetics, and pharmacodynamics of NMD670 in 12 patients with mild MG. NMD670 had a favorable safety profile and led to clinically relevant improvements in the quantitative myasthenia gravis (QMG) total score. This translational study spanning from single muscle fiber recordings to patients provides proof of mechanism for ClC-1 inhibition as a potential therapeutic approach in MG and supports further development of NMD670.


Assuntos
Cloretos , Miastenia Gravis , Humanos , Ratos , Animais , Cloretos/uso terapêutico , Miastenia Gravis/tratamento farmacológico , Músculo Esquelético/fisiologia , Junção Neuromuscular , Canais de Cloreto
2.
Aging Cell ; 18(5): e12992, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290578

RESUMO

Histone acetyltransferase 1 (Hat1) is responsible for the acetylation of newly synthesized histone H4 on lysines 5 and 12 during the process of chromatin assembly. To understand the broader biological role of Hat1, we have generated a conditional mouse knockout model of this enzyme. We previously reported that Hat1 is required for viability and important for mammalian development and genome stability. In this study, we show that haploinsufficiency of Hat1 results in a significant decrease in lifespan. Defects observed in Hat1+/- mice are consistent with an early-onset aging phenotype. These include lordokyphosis (hunchback), muscle atrophy, minor growth retardation, reduced subcutaneous fat, cancer, and paralysis. In addition, the expression of Hat1 is linked to the normal aging process as Hat1 mRNA and protein becomes undetectable in many tissues in old mice. At the cellular level, fibroblasts from Hat1 haploinsufficient embryos undergo early senescence and accumulate high levels of p21. Hat1+/- mouse embryonic fibroblasts (MEFs) display modest increases in endogenous DNA damage but have significantly higher levels of reactive oxygen species (ROS). Consistently, further studies show that Hat1-/- MEFs exhibit mitochondrial defects suggesting a critical role for Hat1 in mitochondrial function. Taken together, these data show that loss of Hat1 induces multiple hallmarks of early-onset aging.


Assuntos
Envelhecimento/metabolismo , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Chem Biol ; 9(10): 1085-94, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12401493

RESUMO

Classifying proteins into functionally distinct families based only on primary sequence information remains a difficult task. We describe here a method to generate a large data set of small molecule affinity fingerprints for a group of closely related enzymes, the papain family of cysteine proteases. Binding data was generated for a library of inhibitors based on the ability of each compound to block active-site labeling of the target proteases by a covalent activity based probe (ABP). Clustering algorithms were used to automatically classify a reference group of proteases into subfamilies based on their small molecule affinity fingerprints. This approach was also used to identify cysteine protease targets modified by the ABP in complex proteomes by direct comparison of target affinity fingerprints with those of the reference library of proteases. Finally, experimental data were used to guide the development of a computational method that predicts small molecule inhibitors based on reported crystal structures. This method could ultimately be used with large enzyme families to aid in the design of selective inhibitors of targets based on limited structural/function information.


Assuntos
Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Papaína/antagonistas & inibidores , Papaína/metabolismo , Algoritmos , Animais , Sítios de Ligação , Análise por Conglomerados , Inibidores de Cisteína Proteinase/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Compostos de Epóxi/química , Cinética , Modelos Moleculares , Papaína/química , Ligação Proteica , Ratos , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA