Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(4): e0075223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37341483

RESUMO

EspZ and Tir are essential virulence effectors of enteropathogenic Escherichia coli (EPEC). EspZ, the second translocated effector, has been suggested to antagonize host cell death induced by the first translocated effector, Tir (translocated intimin receptor). Another characteristic of EspZ is its localization to host mitochondria. However, studies that explored the mitochondrial localization of EspZ have examined the ectopically expressed effector and not the more physiologically relevant translocated effector. Here, we confirmed the membrane topology of translocated EspZ at infection sites and the involvement of Tir in confining its localization to these sites. Unlike the ectopically expressed EspZ, the translocated EspZ did not colocalize with mitochondrial markers. Moreover, no correlation has been found between the capacity of ectopically expressed EspZ to target mitochondria and the ability of translocated EspZ to protect against cell death. Translocated EspZ may have to some extent diminished F-actin pedestal formation induced by Tir but has a marked effect on protecting against host cell death and on promoting host colonization by the bacteria. Taken together, our results suggest that EspZ plays an essential role in facilitating bacterial colonization, likely by antagonizing cell death mediated by Tir at the onset of bacterial infection. This activity of EspZ, which occurs by targeting host membrane components at infection sites, and not mitochondria, may contribute to successful bacterial colonization of the infected intestine. IMPORTANCE EPEC is an important human pathogen that causes acute infantile diarrhea. EspZ is an essential virulence effector protein translocated from the bacterium into the host cells. Detailed knowledge of its mechanisms of action is, therefore, critical for better understanding the EPEC disease. We show that Tir, the first translocated effector, confines the localization of EspZ, the second translocated effector, to infection sites. This activity is important for antagonizing the pro-cell death activity conferred by Tir. Moreover, we show that translocated EspZ leads to effective bacterial colonization of the host. Hence, our data suggest that translocated EspZ is essential because it confers host cell survival to allow bacterial colonization at an early stage of bacterial infection. It performs these activities by targeting host membrane components at infection sites. Identifying these targets is critical for elucidating the molecular mechanism underlying the EspZ activity and the EPEC disease.


Assuntos
Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Adesão Celular , Morte Celular , Humanos , Linhagem Celular Tumoral
2.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037792

RESUMO

Enteropathogenic Escherichia coli (EPEC) belongs to a group of enteric human pathogens known as attaching-and-effacing (A/E) pathogens, which utilize a type III secretion system (T3SS) to translocate a battery of effector proteins from their own cytoplasm into host intestinal epithelial cells. Here we identified EspH to be an effector that prompts the recruitment of the tetraspanin CD81 to infection sites. EspH was also shown to be an effector that suppresses the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) signaling pathway at longer infection times. The inhibitory effect was abrogated upon deletion of the last 38 amino acids located at the C terminus of the protein. The efficacy of EspH-dependent Erk suppression was higher in CD81-deficient cells, suggesting that CD81 may act as a positive regulator of Erk, counteracting Erk suppression by EspH. EspH was found within CD81 microdomains soon after infection but was largely excluded from these domains at a later time. Based on our results, we propose a mechanism whereby CD81 is initially recruited to infection sites in response to EspH translocation. At a later stage, EspH moves out of the CD81 clusters to facilitate effective Erk inhibition. Moreover, EspH selectively inhibits the tumor necrosis factor alpha (TNF-α)-induced Erk signaling pathway. Since Erk and TNF-α have been implicated in innate immunity and cell survival, our studies suggest a novel mechanism by which EPEC suppresses these processes to promote its own colonization and survival in the infected gut.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Tetraspanina 28/metabolismo , Adolescente , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Interações Hospedeiro-Patógeno , Humanos , Intestinos/microbiologia , Intestinos/patologia , Masculino , Domínios Proteicos , Transdução de Sinais , Tetraspanina 28/química , Tetraspanina 28/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Open Biol ; 4(7)2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25056286

RESUMO

GLUT2 is a facilitative glucose transporter, expressed in polarized epithelial cells of the liver, intestine, kidney and pancreas, where it plays a critical role in glucose homeostasis. Together with SGLT1/2, it mediates glucose absorption in metabolic epithelial tissues, where it can be translocated apically upon high glucose exposure. To track the subcellular localization and dynamics of GLUT2, we created an mCherry-hGLUT2 fusion protein and expressed it in multicellular kidney cysts, a major site of glucose reabsorption. Live imaging of GLUT2 enabled us to avoid the artefactual localization of GLUT2 in fixed cells and to confirm the apical GLUT2 model. Live cell imaging showed a rapid 15 ± 3 min PKC-dependent basal-to-apical translocation of GLUT2 in response to glucose stimulation and a fourfold slower basolateral translocation under starvation. These results mark the physiological importance of responding quickly to rising glucose levels. Importantly, we show that phloretin, an apple polyphenol, inhibits GLUT2 translocation in both directions, suggesting that it exerts its effect by PKC inhibition. Subcellular localization studies demonstrated that GLUT2 is endocytosed through a caveolae-dependent mechanism, and that it is at least partly recovered in Rab11A-positive recycling endosome. Our work illuminates GLUT2 dynamics, providing a platform for drug development for diabetes and hyperglycaemia.


Assuntos
Células Epiteliais/citologia , Transportador de Glucose Tipo 2/análise , Transportador de Glucose Tipo 2/metabolismo , Glucose/metabolismo , Rim/citologia , Imagem Óptica/métodos , Animais , Linhagem Celular , Cães , Endocitose , Células Epiteliais/metabolismo , Transportador de Glucose Tipo 2/genética , Humanos , Rim/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Transporte Proteico , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha Fluorescente
4.
PLoS One ; 8(10): e78431, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194932

RESUMO

Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/fisiopatologia , Interações Hospedeiro-Patógeno/fisiologia , Ressonância de Plasmônio de Superfície/métodos , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Tamanho Celular , Cães , Endocitose/fisiologia , Raios Infravermelhos , Células Madin Darby de Rim Canino , Microscopia Confocal , Refratometria
5.
PLoS One ; 7(10): e48454, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119025

RESUMO

We demonstrate that a live epithelial cell monolayer can act as a planar waveguide. Our infrared reflectivity measurements show that highly differentiated simple epithelial cells, which maintain tight intercellular connectivity, support efficient waveguiding of the infrared light in the spectral region of 1.4-2.5 µm and 3.5-4 µm. The wavelength and the magnitude of the waveguide mode resonances disclose quantitative dynamic information on cell height and cell-cell connectivity. To demonstrate this we show two experiments. In the first one we trace in real-time the kinetics of the disruption of cell-cell contacts induced by calcium depletion. In the second one we show that cell treatment with the PI3-kinase inhibitor LY294002 results in a progressive decrease in cell height without affecting intercellular connectivity. Our data suggest that infrared waveguide spectroscopy can be used as a novel bio-sensing approach for studying the morphology of epithelial cell sheets in real-time, label-free manner and with high spatial-temporal resolution.


Assuntos
Técnicas Biossensoriais , Células Epiteliais/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Cálcio/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase
6.
Gut Microbes ; 3(3): 267-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22572833

RESUMO

Type IV pili (Tfp) play a primary role in mediating the adherence of pathogenic bacteria to their hosts. The pilus filament can retract with an immense force. However, the role of this activity in microbial pathogenesis has not been rigorously explored. Experiments performed on volunteers suggested that the retraction capacity of enteropathogenic Escherichia coli (EPEC) Tfp is required for full virulence. Here we review our recent study(1) in which we showed that the retraction capacity of the EPEC Tfp facilitates tight-junction disruption and actin-rich pedestal formation by promoting efficient bacterial protein effector translocation into epithelial host cells. We also present new data using live imaging confocal microscopy suggesting that EPEC adheres to monolayers in microcolonies and that Tfp retraction facilitates significant changes in the microcolony shape, which may be critical for efficient effector delivery. Our studies hence suggest novel insights into the role of pili retraction in EPEC pathogenesis.


Assuntos
Aderência Bacteriana , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/microbiologia , Fímbrias Bacterianas/metabolismo , Junções Íntimas/microbiologia , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Proteínas de Escherichia coli/metabolismo , Humanos , Microscopia , Transporte Proteico , Virulência
7.
Biophys J ; 99(12): 4028-36, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21156146

RESUMO

The development of novel technologies capable of monitoring the dynamics of cell-cell and cell-substrate interactions in real time and a label-free manner is vital for gaining deeper insights into these most fundamental cellular processes. However, the label-free technologies available today provide only limited information on these processes. Here, we report a new (to our knowledge) infrared surface plasmon resonance (SPR)-based methodology that can resolve distinct phases of cell-cell and cell-substrate adhesion of polarized Madin Darby canine kidney epithelial cells. Due to the extended penetration depth of the infrared SP wave, the dynamics of cell adhesion can be detected with high accuracy and high temporal resolution. Analysis of the temporal variation of the SPR reflectivity spectrum revealed the existence of multiple phases in epithelial cell adhesion: initial contact of the cells with the substrate (cell deposition), cell spreading, formation of intercellular contacts, and subsequent generation of cell clusters. The final formation of a continuous cell monolayer could also be sensed. The SPR measurements were validated by optical microscopy imaging. However, in contrast to the SPR method, the optical analyses were laborious and less quantitative, and hence provided only limited information on the dynamics and phases of cell adhesion.


Assuntos
Comunicação Celular , Células Epiteliais/citologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ressonância de Plasmônio de Superfície/métodos , Animais , Movimento Celular , Forma Celular , Células Cultivadas , Cães , Propriedades de Superfície , Fatores de Tempo
8.
Cell Microbiol ; 12(4): 489-505, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19912240

RESUMO

Enterohaemorrhagic Escherichia coli and enteropathogenic E. coli are enteropathogens characterized by their ability to induce the host cell to form actin-rich structures, termed pedestals. A type III secretion system, through which the pathogens deliver effector proteins into infected host cells, is essential for their virulence and pedestal formation. Enterohaemorrhagic E. coli encodes two similar effectors, EspM1 and EspM2, which activate the RhoA signalling pathway and induce the formation of stress fibres upon infection of host cells. We confirm these observations and in addition show that EspM inhibits the formation of actin pedestals. Moreover, we show that translocation of EspM into polarized epithelial cells induces dramatic changes in the tight junction localization and in the morphology and architecture of infected polarized monolayers. These changes are manifested by altered localization of the tight junctions and 'bulging out' morphology of the cells. Surprisingly, despite the dramatic changes in their architecture, the cells remain alive and the epithelial monolayer maintains a normal barrier function. Taken together, our results show that the EspM effectors inhibit pedestal formation and induce tight junction mislocalization as well as dramatic changes in the architecture of the polarized monolayer.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Proteínas de Escherichia coli/fisiologia , Fatores de Virulência/fisiologia , Linhagem Celular , Sobrevivência Celular , Humanos , Fibras de Estresse/metabolismo , Junções Íntimas
9.
Biophys J ; 97(4): 1003-12, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19686647

RESUMO

We report on the application of surface plasmon resonance (SPR), based on Fourier transform infrared spectroscopy in the mid-infrared wavelength range, for real-time and label-free sensing of transferrin-induced endocytic processes in human melanoma cells. The evanescent field of the mid-infrared surface plasmon penetrates deep into the cell, allowing highly sensitive SPR measurements of dynamic processes occurring at significant cellular depths. We monitored in real-time, infrared reflectivity spectra in the SPR regime from living cells exposed to human transferrin (Tfn). We show that although fluorescence microscopy measures primarily Tfn accumulation in recycling endosomes located deep in the cell's cytoplasm, the SPR technique measures mainly Tfn-mediated formation of early endocytic organelles located in close proximity to the plasma membrane. Our SPR and fluorescence data are very well described by a kinetic model of Tfn endocytosis, suggested previously in similar cell systems. Hence, our SPR data provide further support to the rather controversial ability of Tfn to stimulate its own endocytosis. Our analysis also yields what we believe is novel information on the role of membrane cholesterol in modulating the kinetics of endocytic vesicle biogenesis and consumption.


Assuntos
Endocitose/efeitos dos fármacos , Melanoma/metabolismo , Modelos Biológicos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ressonância de Plasmônio de Superfície/métodos , Transferrina/farmacologia , Vesículas Transportadoras/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Vesículas Transportadoras/efeitos dos fármacos
10.
Mol Biol Cell ; 20(1): 544-55, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987340

RESUMO

Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] are phosphoinositides (PIs) present in small amounts in the inner leaflet of the plasma membrane (PM) lipid bilayer of host target cells. They are thought to modulate the activity of proteins involved in enteropathogenic Escherichia coli (EPEC) infection. However, the role of PI(4,5)P(2) and PI(3,4,5)P(3) in EPEC pathogenesis remains obscure. Here we show that EPEC induces a transient PI(4,5)P(2) accumulation at bacterial infection sites. Simultaneous actin accumulation, likely involved in the construction of the actin-rich pedestal, is also observed at these sites. Acute PI(4,5)P(2) depletion partially diminishes EPEC adherence to the cell surface and actin pedestal formation. These findings are consistent with a bimodal role, whereby PI(4,5)P(2) contributes to EPEC association with the cell surface and to the maximal induction of actin pedestals. Finally, we show that EPEC induces PI(3,4,5)P(3) clustering at bacterial infection sites, in a translocated intimin receptor (Tir)-dependent manner. Tir phosphorylated on tyrosine 454, but not on tyrosine 474, forms complexes with an active phosphatidylinositol 3-kinase (PI3K), suggesting that PI3K recruited by Tir prompts the production of PI(3,4,5)P(3) beneath EPEC attachment sites. The functional significance of this event may be related to the ability of EPEC to modulate cell death and innate immunity.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Infecções por Escherichia coli/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Linhagem Celular , Escherichia coli Enteropatogênica/genética , Células Epiteliais/citologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Junções Íntimas/metabolismo
11.
J Virol ; 78(21): 12047-53, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15479844

RESUMO

A subpopulation of hepatitis C virus (HCV) core protein in cells harboring full-length HCV replicons is biochemically associated with detergent-resistant membranes (DRMs) in a manner similar to that of markers of classical lipid rafts. Core protein does not, however, colocalize in immunofluorescence studies with classical plasma membrane raft markers, such as caveolin-1 and the B subunit of cholera toxin, suggesting that core protein is bound to cytoplasmic raft microdomains distinct from caveolin-based rafts. Furthermore, while both the structural core protein and the nonstructural protein NS5A associate with membranes, they do not colocalize in the DRMs. Finally, the ability of core protein to localize to the DRMs did not require other elements of the HCV polyprotein. These results may have broad implications for the HCV life cycle and suggest that the HCV core may be a valuable probe for host cell biology.


Assuntos
Membrana Celular/metabolismo , Detergentes/farmacologia , Hepacivirus/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas do Core Viral/metabolismo , beta-Ciclodextrinas , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Ciclodextrinas/farmacologia , Humanos , Octoxinol/farmacologia , Replicon
12.
Dev Cell ; 5(3): 475-86, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12967566

RESUMO

ErbB-2/HER2 drives epithelial malignancies by forming heterodimers with growth factor receptors. The primordial invertebrate receptor is sorted to the basolateral epithelial surface by binding of the PDZ domain of Lin-7 to the receptor's tail. We show that all four human ErbBs are basolaterally expressed, even when the tail motif is absent. Mutagenesis of hLin-7 unveiled a second domain, KID, that binds to the kinase region of ErbBs. The PDZ interaction mediates stabilization of ErbB-2 at the basolateral surface. On the other hand, binding of KID is involved in initial delivery to the basolateral surface, and in its absence, unprocessed ErbB-2 molecules are diverted to the apical surface. Hence, distinct domains of Lin-7 regulate receptor delivery to and maintenance at the basolateral surface of epithelia.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Polaridade Celular , Epitélio/metabolismo , Proteínas de Membrana/fisiologia , Receptor ErbB-2/biossíntese , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular , Cães , Humanos , Rim , Mutação , Transporte Proteico/fisiologia , Receptor ErbB-2/genética , Receptor ErbB-2/fisiologia , Frações Subcelulares/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA