Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4647, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941132

RESUMO

While nanoscale quantum emitters are effective tags for measuring biomolecular interactions, their utilities for applications that demand single-unit observations are limited by the requirements for large numerical aperture (NA) objectives, fluorescence intermittency, and poor photon collection efficiency resulted from omnidirectional emission. Here, we report a nearly 3000-fold signal enhancement achieved through multiplicative effects of enhanced excitation, highly directional extraction, quantum efficiency improvement, and blinking suppression through a photonic crystal (PC) surface. The approach achieves single quantum dot (QD) sensitivity with high signal-to-noise ratio, even when using a low-NA lens and an inexpensive optical setup. The blinking suppression capability of the PC improves the QDs on-time from 15% to 85% ameliorating signal intermittency. We developed an assay for cancer-associated miRNA biomarkers with single-molecule resolution, single-base mutation selectivity, and 10-attomolar detection limit. Additionally, we observed differential surface motion trajectories of QDs when their surface attachment stringency is altered by changing a single base in a cancer-specific miRNA sequence.


Assuntos
MicroRNAs , Pontos Quânticos , Piscadela , Óptica e Fotônica , Fótons , Pontos Quânticos/química
2.
ACS Nano ; 16(2): 1999-2012, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35107994

RESUMO

Macrophages are white blood cells with diverse functions contributing to a healthy immune response as well as the pathogenesis of cancer, osteoarthritis, atherosclerosis, and obesity. Due to their pleiotropic and dynamic nature, tools for imaging and tracking these cells at scales spanning the whole body down to microns could help to understand their role in disease states. Here we report fluorescent and radioisotopic quantum dots (QDs) for multimodal imaging of macrophage cells in vivo, ex vivo, and in situ. Macrophage specificity is imparted by click-conjugation to dextran, a biocompatible polysaccharide that natively targets these cell types. The emission spectral band of the crystalline semiconductor core was tuned to the near-infrared for optical imaging deep in tissue, and probes were covalently conjugated to radioactive iodine for nuclear imaging. The performance of these probes was compared with all-organic dextran probe analogues in terms of their capacity to target macrophages in visceral adipose tissue using in vivo positron emission tomography/computed tomography (PET/CT) imaging, in vivo fluorescence imaging, ex vivo fluorescence, post-mortem isotopic analyses, and optical microscopy. All probe classes exhibited equivalent physicochemical characteristics in aqueous solution and similar in vivo targeting specificity. However, dextran-mimetic QDs provided enhanced signal-to-noise ratio for improved optical quantification, long-term photostability, and resistance to chemical fixation. In addition, the vascular circulation time for the QD-based probes was extended 9-fold compared with dextran, likely due to differences in conformational flexibility. The enhanced photophysical and photochemical properties of dextran-mimetic QDs may accelerate applications in macrophage targeting, tracking, and imaging across broad resolution scales, particularly advancing capabilities in single-cell and single-molecule imaging and quantification.


Assuntos
Pontos Quânticos , Neoplasias da Glândula Tireoide , Dextranos , Humanos , Radioisótopos do Iodo , Macrófagos , Imagem Óptica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pontos Quânticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA