Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(7): 2241-2255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153730

RESUMO

Diabetic retinopathy (DR) is associated with retinal neovascularization, hard exudates, inflammation, oxidative stress and cell death, leading to vision loss. Anti-vascular endothelial growth factor (Anti-VEGF) therapy through repeated intravitreal injections is an established treatment for reducing VEGF levels in the retina for inhibiting neovascularization and leakage of hard exudates to prevent vision loss. Although anti-VEGF therapy has several clinical benefits, its monthly injection potentially causes devastating ocular complications, including trauma, intraocular hemorrhage, retinal detachment, endophthalmitis, etc. Methods: As mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) demonstrated safety in clinical studies, we have tested the efficacy of MSC-derived small EVs (MSC-sEVs) loaded anti-VEGF drug bevacizumab in a rat model of DR. Results: The study identified a clinically significant finding that sEV loaded with bevacizumab reduces the frequency of intravitreal injection required for treating diabetic retinopathy. The sustained effect is observed from the reduced levels of VEGF, exudates and leukostasis for more than two months following intravitreal injection of sEV loaded with bevacizumab, while bevacizumab alone could maintain reduced levels for about one month. Furthermore, retinal cell death was consistently lower in this period than only bevacizumab. Conclusion: This study provided significant evidence for the prolonged benefits of sEVs as a drug delivery system. Also, EV-mediated drug delivery systems could be considered for clinical application of retinal diseases as they maintain vitreous clarity in the light path due to their composition being similar to cells.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Vesículas Extracelulares , Animais , Ratos , Bevacizumab/uso terapêutico , Injeções Intravítreas , Retinopatia Diabética/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese , Anticorpos Monoclonais Humanizados , Diabetes Mellitus/tratamento farmacológico
2.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R90-R101, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440901

RESUMO

Widespread consumption of diets high in fat and fructose (Western diet, WD) has led to increased prevalence of obesity and diastolic dysfunction (DD). DD is a prominent feature of heart failure with preserved ejection fraction (HFpEF). However, the underlying mechanisms of DD are poorly understood, and treatment options are still limited. We have previously shown that deletion of the cell-specific mineralocorticoid receptor in endothelial cells (ECMR) abrogates DD induced by WD feeding in female mice. However, the specific role of ECMR activation in the pathogenesis of DD in male mice has not been clarified. Therefore, we fed 4-wk-old ECMR knockout (ECMRKO) male mice and littermates (LM) with either a WD or chow diet (CD) for 16 wk. WD feeding resulted in DD characterized by increased left ventricle (LV) filling pressure (E/e') and diastolic stiffness [E/e'/LV inner diameter at end diastole (LVIDd)]. Compared with CD, WD in LM resulted in increased myocardial macrophage infiltration, oxidative stress, and increased myocardial phosphorylation of Akt, in concert with decreased phospholamban phosphorylation. WD also resulted in focal cardiomyocyte remodeling, characterized by areas of sarcomeric disorganization, loss of mitochondrial electron density, and mitochondrial fragmentation. Conversely, WD-induced DD and associated biochemical and structural abnormalities were prevented by ECMR deletion. In contrast with our previously reported observations in females, WD-fed male mice exhibited enhanced Akt signaling and a lower magnitude of cardiac injury. Collectively, our data support a critical role for ECMR in obesity-induced DD and suggest critical mechanistic differences in the genesis of DD between males and females.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Feminino , Masculino , Animais , Camundongos , Células Endoteliais/patologia , Insuficiência Cardíaca/complicações , Receptores de Mineralocorticoides/genética , Camundongos Obesos , Proteínas Proto-Oncogênicas c-akt , Volume Sistólico , Cardiomiopatias/etiologia , Cardiomiopatias/prevenção & controle , Dieta Ocidental , Obesidade/etiologia
3.
Compr Physiol ; 12(4): 3781-3811, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997082

RESUMO

The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.


Assuntos
Glicocálix , Mecanotransdução Celular , Endotélio Vascular/fisiologia , Glicocálix/metabolismo , Glicocálix/patologia , Heparitina Sulfato/metabolismo , Humanos , Mecanotransdução Celular/fisiologia , Estresse Mecânico
4.
Am J Physiol Heart Circ Physiol ; 322(2): H167-H180, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890280

RESUMO

Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.


Assuntos
Cistamina/farmacologia , Dieta Ocidental/efeitos adversos , Inibidores Enzimáticos/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Rigidez Vascular/efeitos dos fármacos , Actinas/metabolismo , Animais , Aorta/metabolismo , Aorta/fisiologia , Células Cultivadas , Colágeno/metabolismo , Elasticidade , Feminino , Humanos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Análise de Onda de Pulso
5.
F1000Res ; 11: 1369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38807919

RESUMO

About 10 to 20% of reported pregnancies have complications like spontaneous abortion (SA), preeclampsia (PE), preterm birth (PTB), and fetal growth restriction (FGR); 60% are attributed to maternal nutritional alterations. Multiple micronutrients (MMN) are supplemented in the antenatal period, but no proper validation/guidelines are available regarding dosing/time, the need for initiation, and the duration of supplementation. Studies have reported adverse pregnancy complications related to the overuse/unwanted use of multiple micronutrient supplementations during pregnancy. Identifying the exact population requiring supplementation is necessary to prevent its abuse. This article attempts to review the impacts of micronutrient deficiency/supplementation in cases of SA, FGR, and gestational diabetes mellitus (GDM), preterm delivery and PE. The study used a literature search using PubMed, Google Scholar, Mendeley, and Scopus Databases using search words pregnancy, spontaneous abortion, gestational diabetes mellitus (GDM), fetal growth restriction (FGR), preterm delivery, preeclampsia (PE) or "adverse pregnancy" associated with minerals, micronutrients, or supplementation. The review also considered in-house literature databases, a single-window search at Kasturba Medical College (KMC) Health sciences library, MAHE (Manipal Academy of Higher Education). The figures included in the study were created by Biorender.com. Micronutrients play multiple roles during pregnancy and fetoplacental growth stimulating growth hormone secretion, Lysyl oxidase (LOX), involved in the crosslinking between collagen and elastin in the amniotic membrane, downregulation of interleukin (IL)-1 alpha, IL-1 beta, IL-4, IL-6, Il-10, IL-12, tumor necrosis factor (TNF)-alpha and several chemokines involved in hypertension, immune-inflammatory pathways, attenuate insulin resistance, structural development of neurons and glia. Over-supplementation has led to complications such as spontaneous abortion and gestational diabetes mellitus. Since there is a lack of standardization concerning micronutrient supplementation during pregnancy, there is a need for systematic study related to the role of micronutrients during each trimester of pregnancy to optimize its supplementation and to prevent hazards associated with its abuse.


Assuntos
Micronutrientes , Resultado da Gravidez , Feminino , Humanos , Gravidez , Diabetes Gestacional , Suplementos Nutricionais/efeitos adversos , Micronutrientes/administração & dosagem , Micronutrientes/efeitos adversos , Micronutrientes/deficiência , Pré-Eclâmpsia , Complicações na Gravidez , Nascimento Prematuro
6.
Cardiovasc Diabetol ; 20(1): 80, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882908

RESUMO

OBJECTIVE: Cardiac diastolic dysfunction (DD) and arterial stiffness are early manifestations of obesity-associated prediabetes, and both serve as risk factors for the development of heart failure with preserved ejection fraction (HFpEF). Since the incidence of DD and arterial stiffness are increasing worldwide due to exponential growth in obesity, an effective treatment is urgently needed to blunt their development and progression. Here we investigated whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses DD and arterial stiffness in an animal model of prediabetes more effectively than valsartan monotherapy. METHODS: Sixteen-week-old male Zucker Obese rats (ZO; n = 64) were assigned randomly to 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val; 68 mg•kg-1•day-1; ZOSV); Group 3: valsartan (31 mg•kg-1•day-1; ZOV) and Group 4: hydralazine, an anti-hypertensive drug (30 mg•kg-1•day-1; ZOH). Six Zucker Lean (ZL) rats that received saline only (Group 5) served as lean controls (ZLC). Drugs were administered daily for 10 weeks by oral gavage. RESULTS: Sac/val improved echocardiographic parameters of impaired left ventricular (LV) stiffness in untreated ZO rats, without altering the amount of food consumed or body weight gained. In addition to improving DD, sac/val decreased aortic stiffness and reversed impairment in nitric oxide-induced vascular relaxation in ZO rats. However, sac/val had no impact on LV hypertrophy. Notably, sac/val was more effective than val in ameliorating DD. Although, hydralazine was as effective as sac/val in improving these parameters, it adversely affected LV mass index. Further, cytokine array revealed distinct effects of sac/val, including marked suppression of Notch-1 by both valsartan and sac/val, suggesting that cardiovascular protection afforded by both share some common mechanisms; however, sac/val, but not val, increased IL-4, which is increasingly recognized for its cardiovascular protection, possibly contributing, in part, to more favorable effects of sac/val over val alone in improving obesity-associated DD. CONCLUSIONS: These studies suggest that sac/val is superior to val in reversing obesity-associated DD. It is an effective drug combination to blunt progression of asymptomatic DD and vascular stiffness to HFpEF development in a preclinical model of obesity-associated prediabetes.


Assuntos
Aminobutiratos/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Compostos de Bifenilo/farmacologia , Cardiomiopatias Diabéticas/prevenção & controle , Obesidade/tratamento farmacológico , Inibidores de Proteases/farmacologia , Valsartana/farmacologia , Rigidez Vascular/efeitos dos fármacos , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Citocinas/genética , Citocinas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Diástole , Modelos Animais de Doenças , Combinação de Medicamentos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Neprilisina/antagonistas & inibidores , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos Zucker , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
7.
Am J Physiol Renal Physiol ; 320(3): F505-F517, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522410

RESUMO

Recent evidence suggests that dipeptidyl peptidase-4 (DPP4) inhibition with saxagliptin (Saxa) is renoprotective under comorbid conditions associated with activation of the renin-angiotensin-aldosterone system (RAAS), such as diabetes, obesity, and hypertension, which confer a high cardiovascular risk. Immune system activation is now recognized as a contributor to RAAS-mediated tissue injury, and, importantly, immunomodulatory effects of DPP4 have been reported. Accordingly, we examined the hypothesis that DPP4 inhibition with Saxa attenuates angiotensin II (ANG II)-induced kidney injury and albuminuria via attenuation of immune activation in the kidney. To this end, male mice were infused with either vehicle or ANG II (1,000 ng/kg/min, s.c.) for 3 wk and received either placebo or Saxa (10 mg/kg/day, p.o.) during the final 2 wk. ANG II infusion increased kidney, but not plasma, DPP4 activity in vivo as well as DPP4 activity in cultured proximal tubule cells. The latter was prevented by angiotensin receptor blockade with olmesartan. Further, ANG II induced hypertension and kidney injury characterized by mesangial expansion, mitochondrial damage, reduced brush border megalin expression, and albuminuria. Saxa inhibited DPP4 activity ∼50% in vivo and attenuated ANG II-mediated kidney injury, independent of blood pressure. Further mechanistic experiments revealed mitigation by Saxa of proinflammatory and profibrotic mediators activated by ANG II in the kidney, including CD8+ T cells, resident macrophages (CD11bhiF4/80loLy6C-), and neutrophils. In addition, Saxa improved ANG II suppressed anti-inflammatory regulatory T cell and T helper 2 lymphocyte activity. Taken together, these results demonstrate, for the first time, blood pressure-independent involvement of renal DPP4 activation contributing to RAAS-dependent kidney injury and immune activation.NEW & NOTEWORTHY This work highlights the role of dipeptidyl peptidase-4 (DPP4) in promoting ANG II-mediated kidney inflammation and injury. Specifically, ANG II infusion in mice led to increases in blood pressure and kidney DPP4 activity, which then led to activation of CD8+ T cells, Ly6C- macrophages, and neutrophils and suppression of anti-inflammatory T helper 2 lymphocytes and regulatory T cells. Collectively, this led to kidney injury, characterized by mesangial expansion, mitochondrial damage, and albuminuria, which were mitigated by DPP4 inhibition independent of blood pressure reduction.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Macrófagos/metabolismo , Angiotensina II/farmacologia , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos
8.
Cell Signal ; 68: 109506, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31862399

RESUMO

Proximal tubular epithelial cells (PTEC) in the S1 segment of the kidney abundantly express sodium-glucose co-transporters (SGLT) that play a critical role in whole body glucose homeostasis. We recently reported suppression of RECK (Reversion Inducing Cysteine Rich Protein with Kazal Motifs), a membrane anchored endogenous MMP inhibitor and anti-fibrotic mediator, in the kidneys of db/db mice, a model of diabetic kidney disease (DKD), as well as in high glucose (HG) treated human kidney proximal tubule cells (HK-2). We further demonstrated that empagliflozin (EMPA), an SGLT2 inhibitor, reversed these effects. Little is known regarding the mechanisms underlying RECK suppression under hyperglycemic conditions, and its rescue by EMPA. Consistent with our previous studies, HG (25 mM) suppressed RECK expression in HK-2 cells. Further mechanistic investigations revealed that HG induced superoxide and hydrogen peroxide generation, oxidative stress-dependent TRAF3IP2 upregulation, NF-κB and p38 MAPK activation, inflammatory cytokine expression (IL-1ß, IL-6, TNF-α, and MCP-1), miR-21 induction, MMP2 activation, and RECK suppression. Moreover, RECK gain-of-function inhibited HG-induced MMP2 activation and HK-2 cell migration. Similar to HG, advanced glycation end products (AGE) induced TRAF3IP2 and suppressed RECK, effects that were inhibited by EMPA. Importantly, EMPA treatment ameliorated all of these deleterious effects, and inhibited epithelial-to-mesenchymal transition (EMT) and HK-2 cell migration. Collectively, these findings indicate that hyperglycemia and associated AGE suppress RECK expression via oxidative stress/TRAF3IP2/NF-κB and p38 MAPK/miR-21 induction. Furthermore, these results suggest that interventions aimed at restoring RECK or inhibiting SGLT2 have the potential to treat kidney inflammatory response/fibrosis and nephropathy under chronic hyperglycemic conditions, such as DKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Compostos Benzidrílicos/farmacologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Glucosídeos/farmacologia , Túbulos Renais Proximais/patologia , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glucose/toxicidade , Produtos Finais de Glicação Avançada/toxicidade , Humanos , Peróxido de Hidrogênio/metabolismo , Mediadores da Inflamação/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Albumina Sérica Humana/toxicidade , Superóxidos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Endocrinology ; 160(12): 2918-2928, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617909

RESUMO

Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.


Assuntos
Endotélio Vascular/fisiopatologia , Canais Epiteliais de Sódio/metabolismo , Obesidade/fisiopatologia , Caracteres Sexuais , Rigidez Vascular , Animais , Células Cultivadas , Endotélio Vascular/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
10.
Cardiovasc Diabetol ; 18(1): 40, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909895

RESUMO

OBJECTIVE: Diabetic nephropathy (DN) is characterized by glomerular and tubulointerstitial injury, proteinuria and remodeling. Here we examined whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses renal injury in a pre-clinical model of early DN more effectively than valsartan monotherapy. METHODS: Sixty-four male Zucker Obese rats (ZO) at 16 weeks of age were distributed into 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val) (68 mg kg-1 day-1; ZOSV); and Group 3: valsartan (val) (31 mg kg-1 day-1; ZOV). Group 4 received hydralazine, an anti-hypertensive drug (30 mg kg-1 day-1, ZOH). Six Zucker Lean (ZL) rats received saline (Group 5) and served as lean controls (ZLC). Drugs were administered daily for 10 weeks by oral gavage. RESULTS: Mean arterial pressure (MAP) increased in ZOC (+ 28%), but not in ZOSV (- 4.2%), ZOV (- 3.9%) or ZOH (- 3.7%), during the 10 week-study period. ZOC were mildly hyperglycemic, hyperinsulinemic and hypercholesterolemic. ZOC exhibited proteinuria, hyperfiltration, elevated renal resistivity index (RRI), glomerular mesangial expansion and podocyte foot process flattening and effacement, reduced nephrin and podocin expression, tubulointerstitial and periarterial fibrosis, increased NOX2, NOX4 and AT1R expression, glomerular and tubular nitroso-oxidative stress, with associated increases in urinary markers of tubular injury. None of the drugs reduced fasting glucose or HbA1c. Hypercholesterolemia was reduced in ZOSV (- 43%) and ZOV (- 34%) (p < 0.05), but not in ZOH (- 13%) (ZOSV > ZOV > ZOH). Proteinuria was ameliorated in ZOSV (- 47%; p < 0.05) and ZOV (- 30%; p > 0.05), but was exacerbated in ZOH (+ 28%; p > 0.05) (ZOSV > ZOV > ZOH). Compared to ZOC, hyperfiltration was improved in ZOSV (p < 0.05 vs ZOC), but not in ZOV or ZOH. None of the drugs improved RRI. Mesangial expansion was reduced by all 3 treatments (ZOV > ZOSV > ZOH). Importantly, sac/val was more effective in improving podocyte and tubular mitochondrial ultrastructure than val or hydralazine (ZOSV > ZOV > ZOH) and this was associated with increases in nephrin and podocin gene expression in ZOSV (p < 0.05), but not ZOV or ZOH. Periarterial and tubulointerstitial fibrosis and nitroso-oxidative stress were reduced in all 3 treatment groups to a similar extent. Of the eight urinary proximal tubule cell injury markers examined, five were elevated in ZOC (p < 0.05). Clusterin and KIM-1 were reduced in ZOSV (p < 0.05), clusterin alone was reduced in ZOV and no markers were reduced in ZOH (ZOSV > ZOV > ZOH). CONCLUSIONS: Compared to val monotherapy, sac/val was more effective in reducing proteinuria, renal ultrastructure and tubular injury in a clinically relevant animal model of early DN. More importantly, these renoprotective effects were independent of improvements in blood pressure, glycemia and nitroso-oxidative stress. These novel findings warrant future clinical investigations designed to test whether sac/val may offer renoprotection in the setting of DN.


Assuntos
Aminobutiratos/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Nefropatias Diabéticas/prevenção & controle , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Tetrazóis/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Biomarcadores/metabolismo , Compostos de Bifenilo , Glicemia/metabolismo , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Combinação de Medicamentos , Fibrose , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Glomérulos Renais/ultraestrutura , Túbulos Renais/metabolismo , Túbulos Renais/fisiopatologia , Túbulos Renais/ultraestrutura , Lipídeos/sangue , Masculino , Neprilisina/antagonistas & inibidores , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/fisiopatologia , Proteinúria/prevenção & controle , Ratos Zucker , Fatores de Tempo , Valsartana
11.
Arterioscler Thromb Vasc Biol ; 39(2): 212-223, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580570

RESUMO

Objective- Abdominal aortic aneurysm is caused by the accumulation of inflammatory cells in the aortic wall. Our recent studies demonstrated that inhibition of Notch signaling attenuates abdominal aortic aneurysm formation by shifting the macrophage balance towards anti-inflammatory (M2) phenotype. Using IL12p40-/- (interleukin 12 p40) mice, we investigated the effects of M2-predominant macrophages on the development of abdominal aortic aneurysm. Approach and Results- Male (8-10 week-old) wild-type and IL12p40-/- mice (n=15) on C57BL/6 background were infused with Ang II (angiotensin II, 1000 ng/kg per minute) by implanting osmotic pumps subcutaneously for 28 days. In the IL12p40-/- mice, Ang II significantly increased the maximal intraluminal diameter (9/15) as determined by transabdominal ultrasound imaging. In addition, IL12p40-deletion significantly increased aortic stiffness in response to Ang II as measured by pulse wave velocity and atomic force microscopy. Histologically, IL12p40-/- mice exhibited increased maximal external diameter of aorta and aortic lesions associated with collagen deposition and increased elastin fragmentation compared with wild-type mice infused with Ang II. Mechanistically, IL12p40 deficiency by siRNA (small interfering RNA) augmented the Tgfß2-mediated Mmp2 expression in wild-type bone marrow-derived macrophages without affecting the expression of Mmp9. No such effects of IL12p40 deficiency on MMP2/MMP9 was observed in human aortic smooth muscle cells or fibroblasts. Depletion of macrophages in IL12p40-/- mice by clodronate liposomes significantly decreased the maximal external diameter of aorta and aortic stiffness in response to Ang II as determined by imaging and atomic force microscopy. Conclusions- IL12p40 depletion promotes the development of abdominal aortic aneurysm, in part, by facilitating recruitment of M2-like macrophages and potentiating aortic stiffness and fibrosis mediated by Tgfß2.


Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Subunidade p40 da Interleucina-12/fisiologia , Animais , Colágeno/metabolismo , Subunidade p40 da Interleucina-12/deficiência , Macrófagos/fisiologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta2/fisiologia , Rigidez Vascular
12.
Cardiovasc Diabetol ; 17(1): 108, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30060748

RESUMO

BACKGROUND: Arterial stiffness is emerging as an independent risk factor for the development of chronic kidney disease. The sodium glucose co-transporter 2 (SGLT2) inhibitors, which lower serum glucose by inhibiting SGLT2-mediated glucose reabsorption in renal proximal tubules, have shown promise in reducing arterial stiffness and the risk of cardiovascular and kidney disease in individuals with type 2 diabetes mellitus. Since hyperglycemia contributes to arterial stiffness, we hypothesized that the SGLT2 inhibitor empagliflozin (EMPA) would improve endothelial function, reduce aortic stiffness, and attenuate kidney disease by lowering hyperglycemia in type 2 diabetic female mice (db/db). MATERIALS/METHODS: Ten-week-old female wild-type control (C57BLKS/J) and db/db (BKS.Cg-Dock7m+/+Leprdb/J) mice were divided into three groups: lean untreated controls (CkC, n = 17), untreated db/db (DbC, n = 19) and EMPA-treated db/db mice (DbE, n = 19). EMPA was mixed with normal mouse chow at a concentration to deliver 10 mg kg-1 day-1, and fed for 5 weeks, initiated at 11 weeks of age. RESULTS: Compared to CkC, DbC showed increased glucose levels, blood pressure, aortic and endothelial cell stiffness, and impaired endothelium-dependent vasorelaxation. Furthermore, DbC exhibited impaired activation of endothelial nitric oxide synthase, increased renal resistivity and pulsatility indexes, enhanced renal expression of advanced glycation end products, and periarterial and tubulointerstitial fibrosis. EMPA promoted glycosuria and blunted these vascular and renal impairments, without affecting increases in blood pressure. In addition, expression of "reversion inducing cysteine rich protein with Kazal motifs" (RECK), an anti-fibrotic mediator, was significantly suppressed in DbC kidneys and partially restored by EMPA. Confirming the in vivo data, EMPA reversed high glucose-induced RECK suppression in human proximal tubule cells. CONCLUSIONS: Empagliflozin ameliorates kidney injury in type 2 diabetic female mice by promoting glycosuria, and possibly by reducing systemic and renal artery stiffness, and reversing RECK suppression.


Assuntos
Compostos Benzidrílicos/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/prevenção & controle , Glucosídeos/farmacologia , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Rigidez Vascular/efeitos dos fármacos , Albuminúria/etiologia , Albuminúria/prevenção & controle , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Proteínas Ligadas por GPI/metabolismo , Glicosúria/etiologia , Glicosúria/prevenção & controle , Humanos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fluxo Pulsátil/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
13.
Cardiovasc Diabetol ; 17(1): 59, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669555

RESUMO

Multiple population based analyses have demonstrated a high incidence of cardiovascular disease (CVD) and cardiovascular (CV) mortality in subjects with T2DM that reduces life expectancy by as much as 15 years. Importantly, the CV system is particularly sensitive to the metabolic and immune derangements present in obese pre-diabetic and diabetic individuals; consequently, CV dysfunction is often the initial CV derangement to occur and promotes the progression to end organ/tissue damage in T2DM. Specifically, diabetic CVD can manifest as microvascular complications, such as nephropathy, retinopathy, and neuropathy, as well as, macrovascular impairments, including ischemic heart disease, peripheral vascular disease, and cerebrovascular disease. Despite some progress in prevention and treatment of CVD, mainly via blood pressure and dyslipidemia control strategies, the impact of metabolic disease on CV outcomes is still a major challenge and persists in proportion to the epidemics of obesity and diabetes. There is abundant pre-clinical and clinical evidence implicating the DPP-4-incretin axis in CVD. In this regard, linagliptin is a unique DPP-4 inhibitor with both CV and renal safety profiles. Moreover, it exerts beneficial CV effects beyond glycemic control and beyond class effects. Linagliptin is protective for both macrovascular and microvascular complications of diabetes in preclinical models, as well as clinical models. Given the role of endothelial-immune cell interactions as one of the key events in the initiation and progression of CVD, linagliptin modulates these cell-cell interactions by affecting two important pathways involving stimulation of NO signaling and potent inhibition of a key immunoregulatory molecule.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Linagliptina/uso terapêutico , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/fisiopatologia , Comorbidade , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/enzimologia , Angiopatias Diabéticas/mortalidade , Angiopatias Diabéticas/fisiopatologia , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Humanos , Linagliptina/efeitos adversos , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento
14.
Endocrinology ; 158(10): 3592-3604, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28977602

RESUMO

Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.


Assuntos
Adamantano/análogos & derivados , Aorta/efeitos dos fármacos , Diástole/efeitos dos fármacos , Dipeptídeos/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Coração/efeitos dos fármacos , Rigidez Vascular/efeitos dos fármacos , Adamantano/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Antígenos CD8/efeitos dos fármacos , Antígenos CD8/metabolismo , Cardiomegalia/induzido quimicamente , Dipeptidil Peptidase 4/efeitos dos fármacos , Dipeptidil Peptidase 4/metabolismo , Ecocardiografia , Fibrose/induzido quimicamente , Expressão Gênica/efeitos dos fármacos , Coração/fisiopatologia , Inflamação , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-jun/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Vasoconstritores/toxicidade
15.
Metabolism ; 74: 32-40, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28764846

RESUMO

OBJECTIVE: Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. MATERIALS/METHODS: Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. RESULTS: XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. CONCLUSIONS: Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration.


Assuntos
Dieta Ocidental , Inflamação/induzido quimicamente , Proteinúria/induzido quimicamente , Ácido Úrico/sangue , Rigidez Vascular/efeitos dos fármacos , Alopurinol/administração & dosagem , Alopurinol/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Úrico/farmacologia , Xantina Oxidase/antagonistas & inibidores
16.
Cardiovasc Diabetol ; 16(1): 61, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476142

RESUMO

BACKGROUND: Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system. METHODS: Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks. RESULTS: WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration. CONCLUSIONS: Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatias/prevenção & controle , Dieta Ocidental/efeitos adversos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Linagliptina/farmacologia , Miocardite/prevenção & controle , Miocárdio/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Células Cultivadas , Diástole , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Fibrose , Camundongos Endogâmicos C57BL , Miocardite/enzimologia , Miocardite/etiologia , Miocardite/fisiopatologia , Miocárdio/ultraestrutura , NF-kappa B/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Obesidade/etiologia , Estresse Oxidativo/efeitos dos fármacos , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R67-R77, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539355

RESUMO

Consumption of a high-fat, high-fructose diet [Western diet (WD)] promotes vascular stiffness, a critical factor in the development of cardiovascular disease (CVD). Obese and diabetic women exhibit greater arterial stiffness than men, which contributes to the increased incidence of CVD in these women. Furthermore, high-fructose diets result in elevated plasma concentrations of uric acid via xanthine oxidase (XO) activation, and uric acid elevation is also associated with increased vascular stiffness. However, the mechanisms by which increased xanthine oxidase activity and uric acid contribute to vascular stiffness in obese females remain to be fully uncovered. Accordingly, we examined the impact of XO inhibition on endothelial function and vascular stiffness in female C57BL/6J mice fed a WD or regular chow for 16 wk. WD feeding resulted in increased arterial stiffness, measured by atomic force microscopy in aortic explants (16.19 ± 1.72 vs. 5.21 ± 0.54 kPa, P < 0.05), as well as abnormal aortic endothelium-dependent and -independent vasorelaxation. XO inhibition with allopurinol (widely utilized in the clinical setting) substantially improved vascular relaxation and attenuated stiffness (16.9 ± 0.50 vs. 3.44 ± 0.50 kPa, P < 0.05) while simultaneously lowering serum uric acid levels (0.55 ± 0.98 vs. 0.21 ± 0.04 mg/dL, P < 0.05). In addition, allopurinol improved WD-induced markers of fibrosis and oxidative stress in aortic tissue, as analyzed by immunohistochemistry and transmission electronic microscopy. Collectively, these results demonstrate that XO inhibition protects against WD-induced vascular oxidative stress, fibrosis, impaired vasorelaxation, and aortic stiffness in females. Furthermore, excessive oxidative stress resulting from XO activation appears to play a key role in mediating vascular dysfunction induced by chronic exposure to WD consumption in females.


Assuntos
Alopurinol/administração & dosagem , Aorta/fisiologia , Dieta Ocidental , Ácido Úrico/sangue , Rigidez Vascular/fisiologia , Vasodilatação/fisiologia , Xantina Oxidase/metabolismo , Animais , Aorta/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Rigidez Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/fisiologia , Xantina Oxidase/antagonistas & inibidores
18.
Endocrinology ; 158(6): 1875-1885, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430983

RESUMO

The role of estrogen receptor-α (ERα) signaling in the vasculature of females has been described under different experimental conditions and our group recently reported that lack of endothelial cell (EC) ERα in female mice fed a Western diet (WD) results in amelioration of vascular stiffness. Conversely, the role of ERα in the male vasculature in this setting has not been explored. In conditions of overnutrition and insulin resistance, augmented arterial stiffness, endothelial dysfunction, and arterial remodeling contribute to the development of cardiovascular disease. Here, we used a rodent model of decreased ERα expression in ECs [endothelial cell estrogen receptor-α knockout (EC-ERαKO)] to test the hypothesis that, similar to our findings in females, loss of ERα signaling in the endothelium of insulin-resistant males would result in decreased arterial stiffness. EC-ERαKO male mice and same-sex littermates were fed a WD (high in fructose and fat) for 20 weeks and then assessed for vascular function and stiffness. EC-ERαKO mice were heavier than littermates but exhibited decreased vascular stiffness without differences in endothelial-dependent vasodilatory responses. Mesenteric arteries from EC-ERαKO mice had significantly increased diameters, wall cross-sectional areas, and mean wall thicknesses, indicative of outward hypertrophic remodeling. This remodeling paralleled an increased vessel wall content of collagen and elastin, inhibition of matrix metalloproteinase activation and a decrease of the incremental modulus of elasticity. In addition, internal elastic lamina fenestrae were more abundant in the EC-ERαKO mice. In conclusion, loss of endothelial ERα reduces vascular stiffness in male mice fed a WD with an associated outward hypertrophic remodeling of resistance arteries.


Assuntos
Dieta Ocidental/efeitos adversos , Receptor alfa de Estrogênio/genética , Remodelação Vascular/genética , Rigidez Vascular/genética , Animais , Células Cultivadas , Feminino , Masculino , Artérias Mesentéricas/fisiopatologia , Camundongos , Camundongos Knockout , Vasodilatação/genética
19.
Int J Mol Sci ; 17(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27213360

RESUMO

Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT1R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10(-8) M) treatment of T35OK-AT1R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT1R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression.


Assuntos
Angiotensina II/metabolismo , Dipeptidil Peptidase 4/metabolismo , Regulação da Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Sistema de Sinalização das MAP Quinases , Angiotensina II/farmacologia , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/complicações , Obesidade/metabolismo , Insuficiência Renal/etiologia , Insuficiência Renal/metabolismo
20.
Endocrinology ; 157(4): 1590-600, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26872089

RESUMO

Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.


Assuntos
Dieta Ocidental , Células Endoteliais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Rigidez Vascular/fisiologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/fisiologia , Caderinas/genética , Caderinas/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Artéria Femoral/fisiologia , Immunoblotting , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Força Atômica , Análise de Onda de Pulso , Fator de Crescimento Transformador beta/metabolismo , Rigidez Vascular/genética , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA