Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542123

RESUMO

Cryptorchidism (CO) or undescended testes is defined as the failure of one or both testes to be positioned inside the scrotum. Typically, cryptorchidism is detected at birth or shortly thereafter, and in humans, it is considered to be part of the testicular dysgenesis syndrome (TDS), a complex pathology regarding the male reproductive system that apparently involves the interaction of both genetic and environmental harmful factors, mainly during embryonic development. Serotonin (5-HT) is an ancient molecule that participates in a broad range of body functions, and in recent years, its importance in reproduction has started to be elucidated. In male pathologies such as infertility, varicocele, erectile dysfunction, and primary carcinoid tumors, an increase in 5-HT concentration or its metabolites in the blood, semen, and urine has been directly related; nevertheless, the role of 5-HT in CO remains unknown. In the present work, our goal was to answer two important questions: (1) whether some serotonergic system components are present in adult male Oryctolagus cuniculus (chinchilla rabbit) and (2) if there are changes in their expression in an experimental model of CO. Using histological, molecular, and biochemical approaches, we found the presence of some serotonergic system components in the adult chinchilla rabbit, and we demonstrated that its expression is downregulated after CO was pharmacologically induced. Although we did not test the role of 5-HT in the etiology of CO, our results suggest that this indoleamine could be important for the regulation of steroidogenesis and spermatogenesis processes in the chinchilla rabbit during adulthood. Finally, in parallel experimental series, we found downregulation of kynurenine concentration in COI rabbits when compared to control ones, suggesting that CO could be affecting the kynurenine pathway and probably testicular immune privilege which in turn could lead to infertility/sterility conditions in this disorder.


Assuntos
Criptorquidismo , Infertilidade , Lagomorpha , Humanos , Adulto , Coelhos , Masculino , Animais , Regulação para Baixo , Cinurenina , Serotonina , Testículo/patologia , Infertilidade/patologia
2.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003293

RESUMO

Chemoresistance to standard neoadjuvant treatment commonly occurs in locally advanced breast cancer, particularly in the luminal subtype, which is hormone receptor-positive and represents the most common subtype of breast cancer associated with the worst outcomes. Identifying the genes associated with chemoresistance is crucial for understanding the underlying mechanisms and discovering effective treatments. In this study, we aimed to identify genes linked to neoadjuvant chemotherapy resistance in 62 retrospectively included patients with luminal breast cancer. Whole RNA sequencing of 12 patient biopsies revealed 269 differentially expressed genes in chemoresistant patients. We further validated eight highly correlated genes associated with resistance. Among these, solute carrier family 12 member 1 (SLC12A1) and glutamate ionotropic AMPA type subunit 4 (GRIA4), both implicated in ion transport, showed the strongest association with chemoresistance. Notably, SLC12A1 expression was downregulated, while protein levels of glutamate receptor 4 (GLUR4), encoded by GRIA4, were elevated in patients with a worse prognosis. Our results suggest a potential link between SLC12A1 gene expression and GLUR4 protein levels with chemoresistance in luminal breast cancer. In particular, GLUR4 protein could serve as a potential target for drug intervention to overcome chemoresistance.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Membrana Transportadoras , Terapia Neoadjuvante , Estudos Retrospectivos , Membro 1 da Família 12 de Carreador de Soluto
3.
J Vis Exp ; (199)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677025

RESUMO

Long noncoding RNAs (lncRNAs) play key regulatory roles in gene expression at the transcriptional level. Experimental evidence has established that a substantial fraction of lncRNA preferentially accumulates in the nucleus. For analysis of the function of nuclear lncRNAs, it is important to achieve efficient knockdown of these transcripts inside the nucleus. In contrast to the use of RNA interference, a technology that depends on the cytoplasmic silencing machinery, an antisense oligonucleotide (ASO) technology can achieve RNA knockdown by recruiting RNase H to the RNA-DNA duplexes for nuclear RNA cleavage. Unlike the use of CRISPR-Cas tools for genome engineering, where possible alterations in the chromatin state can occur, ASOs allow the efficient knockdown of nuclear transcripts without modifying the genome. Nevertheless, one of the major obstacles to ASO-mediated knockdown is its transitory effect. For the study of long-lasting effects of lncRNA silencing, maintaining efficient knockdown for a long time is needed. In this study, a protocol was developed to achieve a knockdown effect for over 21 days. The purpose was to evaluate the cis-regulatory effects of lncRNA knockdown on the adjacent coding gene RFC4, which is related to chromosomal instability, a condition that is observed only through time and cell aging. Two different human cell lines were used: PrEC, normal primary prostate epithelial cells, and HCT116, an epithelial cell line isolated from colorectal carcinoma, achieving successful knockdown in the assayed cell lines.


Assuntos
Oligonucleotídeos Antissenso , RNA Longo não Codificante , Masculino , Humanos , Oligonucleotídeos Antissenso/genética , RNA Longo não Codificante/genética , Núcleo Celular , Oligonucleotídeos , Linhagem Celular
4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108589

RESUMO

Given their tumor-specific and stage-specific gene expression, long non-coding RNAs (lncRNAs) have demonstrated to be potential molecular biomarkers for diagnosis, prognosis, and treatment response. Particularly, the lncRNAs DSCAM-AS1 and GATA3-AS1 serve as examples of this because of their high subtype-specific expression profile in luminal B-like breast cancer. This makes them candidates to use as molecular biomarkers in clinical practice. However, lncRNA studies in breast cancer are limited in sample size and are restricted to the determination of their biological function, which represents an obstacle for its inclusion as molecular biomarkers of clinical utility. Nevertheless, due to their expression specificity among diseases, such as cancer, and their stability in body fluids, lncRNAs are promising molecular biomarkers that could improve the reliability, sensitivity, and specificity of molecular techniques used in clinical diagnosis. The development of lncRNA-based diagnostics and lncRNA-based therapeutics will be useful in routine medical practice to improve patient clinical management and quality of life.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Qualidade de Vida , Reprodutibilidade dos Testes , Biomarcadores , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
5.
J Neurooncol ; 161(1): 165-174, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36525166

RESUMO

PURPOSE: Astrocytomas are a type of malignant brain tumor with an unfavorable clinical course. The impact of AGT and MGMT somatic variants in the prognosis of astrocytoma is unknown, and it is controversial for TP53. Moreover, there is a lack of knowledge regarding the molecular characteristics of astrocytomas in Mexican patients. METHODS: We studied 48 Mexican patients, men and women, with astrocytoma (discovery cohort). We performed DNA deep sequencing in tumor samples, targeting AGT, MGMT and TP53, and we studied MGMT gene promoter methylation status. Then we compared our findings to a cohort which included data from patients with astrocytoma from The Cancer Genome Atlas (validation cohort). RESULTS: In the discovery cohort, we found a higher number of somatic variants in AGT and MGMT than in the validation cohort (10.4% vs < 1%, p < 0.001), and, in both cohorts, we observed only women carried variants AGT variants. We also found that the presence of either MGMT variant or promoter methylation was associated to better survival and response to chemotherapy, and, in conjunction with TP53 variants, to progression-free survival. CONCLUSIONS: The occurrence of AGT variants only in women expands our knowledge about the molecular differences in astrocytoma between men and women. The increased prevalence of AGT and MGMT variants in the discovery cohort also points towards possible distinctions in the molecular landscape of astrocytoma among populations. Our findings warrant further study.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Feminino , Humanos , Masculino , Astrocitoma/patologia , Biomarcadores , Neoplasias Encefálicas/patologia , DNA/uso terapêutico , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Mutação , Prognóstico , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
6.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232851

RESUMO

Lynch syndrome (LS) is the main hereditary colorectal cancer syndrome. There have been few reports regarding the clinical and molecular characteristics of LS patients in Latin America; this is particularly true in the Mexican population, where no information is available. The present study aims to describe the clinical and molecular spectrum of variants in a cohort of patients diagnosed with LS in Mexico. We present a retrospective analysis of 412 patients with suspected LS, whose main site of cancer diagnosis was the colon (58.25%), followed by the endometrium (18.93%). Next-generation sequencing analysis, with an extensive multigene panel, showed that 27.1% (112/414) had a variant in one of the genes of the mismatch repair pathway (MMR); 30.4% (126/414) had a variant in non-MMR genes such as CHEK2, APC, MUTYH, BRCA1, and BRCA2; and 42.5% (176/414) had no genetic variants. Most of the variants were found in MLH1. Pathogenic variants (PVs) in MMR genes were identified in 65.7% (96/146) of the total PVs, and 34.24% (45/146) were in non-MMR genes. Molecular and clinical characterization of patients with LS in specific populations allowed personalized follow-up, with the option for targeted treatment with immune checkpoint inhibitors and the development of public health policies. Moreover, such characterization allows for family cascade testing and consequent prevention strategies.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/epidemiologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Inibidores de Checkpoint Imunológico , México/epidemiologia , Proteína 2 Homóloga a MutS/genética , Estudos Retrospectivos
7.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565196

RESUMO

Despite having a favorable response to platinum-based chemotherapies, ~15% of Testicular Germ-Cell Tumor (TGCT) patients are platinum-resistant. Mortality rates among Latin American countries have remained constant over time, which makes the study of this population of particular interest. To gain insight into this phenomenon, we conducted whole-exome sequencing, microarray-based comparative genomic hybridization, and copy number analysis of 32 tumors from a Mexican cohort, of which 18 were platinum-sensitive and 14 were platinum-resistant. We incorporated analyses of mutational burden, driver mutations, and SNV and CNV signatures. DNA breakpoints in genes were also investigated and might represent an interesting research opportunity. We observed that sensitivity to chemotherapy does not seem to be explained by any of the mutations detected. Instead, we uncovered CNVs, particularly amplifications on segment 2q11.1 as a novel variant with chemosensitivity biomarker potential. Our data shed light into understanding platinum resistance in a Latin-origin population.

9.
Prostate Cancer Prostatic Dis ; 25(3): 431-443, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35422101

RESUMO

BACKGROUND: Risk stratification or progression in prostate cancer is performed with the support of clinical-pathological data such as the sum of the Gleason score and serum levels PSA. For several decades, methods aimed at the early detection of prostate cancer have included the determination of PSA serum levels. The aim of this systematic review is to provide an overview about recent advances in the discovery of new molecular biomarkers through transcriptomics, genomics and artificial intelligence that are expected to improve clinical management of the prostate cancer patient. METHODS: An exhaustive search was conducted by Pubmed, Google Scholar and Connected Papers using keywords relating to the genetics, genomics and artificial intelligence in prostate cancer, it includes "biomarkers", "non-coding RNAs", "lncRNAs", "microRNAs", "repetitive sequence", "prognosis", "prediction", "whole-genome sequencing", "RNA-Seq", "transcriptome", "machine learning", and "deep learning". RESULTS: New advances, including the search for changes in novel biomarkers such as mRNAs, microRNAs, lncRNAs, and repetitive sequences, are expected to contribute to an earlier and accurate diagnosis for each patient in the context of precision medicine, thus improving the prognosis and quality of life of patients. We analyze several aspects that are relevant for prostate cancer including its new molecular markers associated with diagnosis, prognosis, and prediction to therapy and how bioinformatic approaches such as machine learning and deep learning can contribute to clinic. Furthermore, we also include current techniques that will allow an earlier diagnosis, such as Spatial Transcriptomics, Exome Sequencing, and Whole-Genome Sequencing. CONCLUSION: Transcriptomic and genomic analysis have contributed to generate knowledge in the field of prostate carcinogenesis, new information about coding and non-coding genes as biomarkers has emerged. Synergies created by the implementation of artificial intelligence to analyze and understand sequencing data have allowed the development of clinical strategies that facilitate decision-making and improve personalized management in prostate cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , Inteligência Artificial , Biomarcadores , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Humanos , Masculino , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Qualidade de Vida
10.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328692

RESUMO

The long noncoding RNA (lncRNA) telomeric repeat-containing RNA (TERRA) has been associated with telomeric homeostasis, telomerase recruitment, and the process of chromosome healing; nevertheless, the impact of this association has not been investigated during the carcinogenic process. Determining whether changes in TERRA expression are a cause or a consequence of cell transformation is a complex task because studies are usually carried out using either cancerous cells or tumor samples. To determine the role of this lncRNA in cellular aging and chromosome healing, we evaluated telomeric integrity and TERRA expression during the establishment of a clone of untransformed myeloid cells. We found that reduced expression of TERRA disturbed the telomeric homeostasis of certain loci, but the expression of the lncRNA was affected only when the methylation of subtelomeric bivalent chromatin domains was compromised. We conclude that the disruption in TERRA homeostasis is a consequence of cellular transformation and that changes in its expression profile can lead to telomeric and genomic instability.


Assuntos
RNA Longo não Codificante , Homeostase do Telômero , Cromatina/genética , Heterocromatina , Metilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Telômero/genética , Telômero/metabolismo
11.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739170

RESUMO

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Assuntos
Complexo de Endopeptidases do Proteassoma , RNA Satélite , Centrômero/genética , Centrômero/metabolismo , DNA Satélite/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Satélite/genética , Regulação para Cima
12.
Cancer Treat Res Commun ; 29: 100452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34517195

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most common cancers and leading cause of cancer-related deaths in women. Metastatic disease, particularly brain metastases (BM), is associated with death in BC patients. The neutrophil-to-lymphocyte ratio (NLR) has been associated with BC prognosis, but it is not usually used in clinical practice and has not been associated with BM. We aimed to determine if there is an association between NLR and BM and if NLR is associated with survival in a Hispanic population. METHODS: A retrospective cohort with a total of 2,104 patients with a confirmed diagnosis of BC at a single referral center were randomly divided into training and validation datasets. Univariable and multivariable analyses were performed to study the association of NLR with BM and/or survival. RESULTS: No significant differences between datasets were identified. A high NLR (> 2.2) was associated with a higher frequency of BM after multivariable adjustment in both datasets. Overall survival was shorter in patients with a high NLR; however, the most important factor associated with outcome was the presence of BM. The interaction NLR/BM was not statistically significant. CONCLUSION: A high NLR at BC diagnosis was associated with a higher frequency of BM, and the presence of BM was associated with worse overall survival in Hispanic BC patients.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/complicações , Linfócitos/metabolismo , Neutrófilos/metabolismo , Adulto , Neoplasias Encefálicas/patologia , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Hispânico ou Latino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
13.
J Mol Diagn ; 23(10): 1306-1323, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358678

RESUMO

Breast cancer is one of the leading causes of mortality in women worldwide, and neoadjuvant chemotherapy has emerged as an option for the management of locally advanced breast cancer. Extensive efforts have been made to identify new molecular markers to predict the response to neoadjuvant chemotherapy. Transcripts that do not encode proteins, termed long noncoding RNAs (lncRNAs), have been shown to display abnormal expression profiles in different types of cancer, but their role as biomarkers in response to neoadjuvant chemotherapy has not been extensively studied. Herein, lncRNA expression was profiled using RNA sequencing in biopsies from patients who subsequently showed either response or no response to treatment. GATA3-AS1 was overexpressed in the nonresponder group and was the most stable feature when performing selection in multiple random forest models. GATA3-AS1 was experimentally validated by quantitative RT-PCR in an extended group of 68 patients. Expression analysis confirmed that GATA3-AS1 is overexpressed primarily in patients who were nonresponsive to neoadjuvant chemotherapy, with a sensitivity of 92.9% and a specificity of 75.0%. The statistical model was based on luminal B-like patients and adjusted by menopausal status and phenotype (odds ratio, 37.49; 95% CI, 6.74-208.42; P = 0.001); GATA3-AS1 was established as an independent predictor of response. Thus, lncRNA GATA3-AS1 is proposed as a potential predictive biomarker of nonresponse to neoadjuvant chemotherapy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição GATA3/genética , Terapia Neoadjuvante/métodos , RNA Antissenso/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Prognóstico , RNA-Seq/métodos , Receptor ErbB-2/metabolismo , Resultado do Tratamento
14.
Front Oncol ; 10: 605386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312959

RESUMO

Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.

15.
Rev. invest. clín ; 72(6): 372-379, Nov.-Dec. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1289732

RESUMO

Abstract Background: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. Objective: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. Methods: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. Results: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. Conclusions: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.


Assuntos
Humanos , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Neoplasias Ovarianas/genética , Adenocarcinoma/genética , Proteínas de Ciclo Celular/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Ovarianas/mortalidade , Prognóstico , Adenocarcinoma/mortalidade , Taxa de Sobrevida , Estudos Retrospectivos
16.
Rev Invest Clin ; 72(6): 372-379, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33052898

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. OBJECTIVE: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. METHODS: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. RESULTS: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. CONCLUSIONS: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.


Assuntos
Adenocarcinoma/genética , Proteínas de Ciclo Celular/genética , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Adenocarcinoma/mortalidade , Adolescente , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/mortalidade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
17.
Rev Invest Clin ; 73(3)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32488223

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. OBJECTIVE: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. METHODS: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. RESULTS: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. CONCLUSIONS: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.

18.
Mol Ther Nucleic Acids ; 20: 409-420, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244168

RESUMO

MicroRNAs are small noncoding transcripts that posttranscriptionally regulate gene expression via base-pairing complementarity. Their role in cancer can be related to tumor suppression or oncogenic function. Moreover, they have been linked to processes recognized as hallmarks of cancer, such as apoptosis, invasion, metastasis, and proliferation. Particularly, one of the first oncomiRs found upregulated in a variety of cancers, such as gliomas, breast cancer, and colorectal cancer, was microRNA-21 (miR-21). Some of its target genes associated with cancer are PTEN (phosphatase and tensin homolog), PDCD4 (programmed cell death protein 4), RECK (reversion-inducing cysteine-rich protein with Kazal motifs), and STAT3 (signal transducer activator of transcription 3). As a result, miR-21 has been proposed as a plausible diagnostic and prognostic biomarker, as well as a therapeutic target for several types of cancer. Currently, research and clinical trials to inhibit miR-21 through anti-miR-21 oligonucleotides and ADM-21 are being conducted. As all of the evidence suggests, miR-21 is involved in carcinogenic processes; therefore, inhibiting it could have effects on more than one type of cancer. However, whether miR-21 can be used as a tissue-specific biomarker should be analyzed with caution. Consequently, the purpose of this review is to outline the available information and recent advances regarding miR-21 as a potential biomarker in the clinical setting and as a therapeutic target in cancer to highlight its importance in the era of precision medicine.

19.
PLoS One ; 14(9): e0222709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31545835

RESUMO

The deletion of exons 9 to 12 of BRCA1 (9-12 del BRCA1) is considered a founder mutation in the Mexican population. We evaluate the usefulness of the target detection of 9-12 del BRCA1 as the first molecular diagnostic strategy in patients with Hereditary Breast and Ovarian Cancer (HBOC). We performed the genetic assessment of 637 patients with suspected HBOC. The region corresponding to the breakpoints for the 9-12 del BRCA1 was amplified by polymerase chain reaction (PCR). An analysis of the clinical data of the carriers and non-carriers was done, searching for characteristics that correlated with the deletion. The 9-12 del BRCA1 was detected in 5% of patients with suspected HBOC (30/637). In patients diagnosed with ovarian cancer, 13 of 30 were 9-12 del BRCA1 carriers, which represents 43%. We found a significant association between the 9-12 del BRCA1 carriers with triple negative breast cancer and high-grade papillary serous ovarian cancer. We concluded that the detection of the 9-12 del BRCA1 is useful as a first molecular diagnostic strategy in the Mexican population. In particular, it shortens the gap in genetic assessment in patients with triple negative breast cancer and ovarian cancer.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/genética , Adulto , Neoplasias da Mama/diagnóstico , Éxons/genética , Saúde da Família , Feminino , Efeito Fundador , Testes Genéticos , Humanos , México , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Deleção de Sequência , Adulto Jovem
20.
Front Oncol ; 9: 1404, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921661

RESUMO

Dysregulated metabolism is a common feature of cancer cells and is considered a hallmark of cancer. Altered tumor-metabolism confers an adaptive advantage to cancer cells to fulfill the high energetic requirements for the maintenance of high proliferation rates, similarly, reprogramming metabolism confers the ability to grow at low oxygen concentrations and to use alternative carbon sources. These phenomena result from the dysregulated expression of diverse genes, including those encoding microRNAs (miRNAs) which are involved in several metabolic and tumorigenic pathways through its post-transcriptional-regulatory activity. Further, the identification of key actionable altered miRNA has allowed to propose novel targeted therapies to modulated tumor-metabolism. In this review, we discussed the different roles of miRNAs in cancer cell metabolism and novel miRNA-based strategies designed to target the metabolic machinery in human cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA