Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(49): 34308-24, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25315779

RESUMO

Fast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans. Here, we show a novel endogenous regulatory mechanism that can modulate GlyT2 activity based on a compartmentalized interaction between GlyT2, neuronal plasma membrane Ca(2+)-ATPase (PMCA) isoforms 2 and 3, and Na(+)/Ca(2+)-exchanger 1 (NCX1). This GlyT2·PMCA2,3·NCX1 complex is found in lipid raft subdomains where GlyT2 has been previously found to be fully active. We show that endogenous PMCA and NCX activities are necessary for GlyT2 activity and that this modulation depends on lipid raft integrity. Besides, we propose a model in which GlyT2·PMCA2-3·NCX complex would help Na(+)/K(+)-ATPase in controlling local Na(+) increases derived from GlyT2 activity after neurotransmitter release.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células Receptoras Sensoriais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Regulação da Expressão Gênica , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Peptídeos/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Terminações Pré-Sinápticas/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Ratos , Ratos Wistar , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Transmissão Sináptica , Tioureia/análogos & derivados , Tioureia/farmacologia , beta-Ciclodextrinas/farmacologia
2.
PLoS One ; 8(5): e63230, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23650557

RESUMO

The neuronal transporter GlyT2 is a polytopic, 12-transmembrane domain, plasma membrane glycoprotein involved in the removal and recycling of synaptic glycine from inhibitory synapses. Mutations in the human GlyT2 gene (SLC6A5) that cause deficient glycine transport or defective GlyT2 trafficking are the second most common cause of hyperekplexia or startle disease. In this study we examined several aspects of GlyT2 biogenesis that involve the endoplasmic reticulum chaperone calnexin (CNX). CNX binds transiently to an intermediate under-glycosylated transporter precursor and facilitates GlyT2 processing. In cells expressing GlyT2, transporter accumulation and transport activity were attenuated by siRNA-mediated CNX knockdown and enhanced by CNX overexpression. GlyT2 binding to CNX was mediated by glycan and polypeptide-based interactions as revealed by pharmacological approaches and the behavior of GlyT2 N-glycan-deficient mutants. Moreover, transporter folding appeared to be stabilized by N-glycans. Co-expression of CNX and a fully non-glycosylated mutant rescues glycine transport but not mutant surface expression. Hence, CNX discriminates between different conformational states of GlyT2 displaying a lectin-independent chaperone activity. GlyT2 wild-type and mutant transporters were finally degraded in the lysosome. Our findings provide further insight into GlyT2 biogenesis, and a useful framework for the study of newly synthesized GlyT2 transporters bearing hyperekplexia mutations.


Assuntos
Calnexina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/biossíntese , Substituição de Aminoácidos , Animais , Células COS , Calnexina/genética , Chlorocebus aethiops , Glucosidases/antagonistas & inibidores , Glucosidases/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Glicosilação , Cinética , Manosidases/antagonistas & inibidores , Manosidases/metabolismo , Camundongos , Ligação Proteica , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise , Ratos , Tapsigargina/farmacologia , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas
3.
J Biol Chem ; 287(34): 28986-9002, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753417

RESUMO

Hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder. However, recessive mutations in the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 gene (SLC6A5) are rapidly emerging as a second major cause of startle disease. In this study, systematic DNA sequencing of SLC6A5 revealed a new dominant GlyT2 mutation: pY705C (c.2114A→G) in transmembrane domain 11, in eight individuals from Spain and the United Kingdom. Curiously, individuals harboring this mutation show significant variation in clinical presentation. In addition to classical hyperekplexia symptoms, some individuals had abnormal respiration, facial dysmorphism, delayed motor development, or intellectual disability. We functionally characterized this mutation using molecular modeling, electrophysiology, [(3)H]glycine transport, cell surface expression, and cysteine labeling assays. We found that the introduced cysteine interacts with the cysteine pair Cys-311-Cys-320 in the second external loop of GlyT2. This interaction impairs transporter maturation through the secretory pathway, reduces surface expression, and inhibits transport function. Additionally, Y705C presents altered H(+) and Zn(2+) dependence of glycine transport that may affect the function of glycinergic neurotransmission in vivo.


Assuntos
Genes Dominantes , Doenças Genéticas Inatas , Proteínas da Membrana Plasmática de Transporte de Glicina , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Doenças do Sistema Nervoso , Substituição de Aminoácidos , Animais , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Glicina/genética , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Transporte de Íons/genética , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Terminações Pré-Sinápticas , Transporte Proteico/genética , Espanha , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA