Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 228(4): 412-421, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36808252

RESUMO

BACKGROUND: Kawasaki disease (KD) is a febrile illness of young childhood that can result in coronary artery aneurysms and death. Coronavirus disease 2019 (COVID-19) mitigation strategies resulted in a marked decrease in KD cases worldwide, supporting a transmissible respiratory agent as the cause. We previously reported a peptide epitope recognized by monoclonal antibodies (MAbs) derived from clonally expanded peripheral blood plasmablasts from 3 of 11 KD children, suggesting a common disease trigger in a subset of patients with KD. METHODS: We performed amino acid substitution scans to develop modified peptides with improved recognition by KD MAbs. We prepared additional MAbs from KD peripheral blood plasmablasts and assessed MAb characteristics that were associated with binding to the modified peptides. RESULTS: We report a modified peptide epitope that is recognized by 20 MAbs from 11 of 12 KD patients. These MAbs predominantly use heavy chain VH3-74; two-thirds of VH3-74 plasmablasts from these patients recognize the epitope. The MAbs were nonidentical between patients but share a common complementarity-determining region 3 (CDR3) motif. CONCLUSIONS: These results demonstrate a convergent VH3-74 plasmablast response to a specific protein antigen in children with KD, supporting one predominant causative agent in the etiopathogenesis of the illness.


Assuntos
COVID-19 , Síndrome de Linfonodos Mucocutâneos , Humanos , Criança , Epitopos , Formação de Anticorpos , Anticorpos Monoclonais , Peptídeos
2.
J Pediatric Infect Dis Soc ; 6(3): e94-e102, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505365

RESUMO

BACKGROUND: Kawasaki disease (KD) is widely viewed as an acute arteritis. However, our pathologic studies show that chronic coronary arteritis can persist long after disease onset and is closely linked with arterial stenosis. Transcriptome profiling of acute KD arteritis tissues revealed upregulation of T lymphocyte, type I interferon, and allograft inflammatory factor-1 (AIF1) genes. We determined whether these immune responses persist in chronic KD arteritis, and we investigated the role of AIF1 in these responses. METHODS: Gene expression in chronic KD and childhood control arteries was determined by real-time reverse-transcriptase polymerase chain reaction, and arterial protein expression was determined by immunohistochemistry and immunofluorescence. Allograft inflammatory factor-1 small-interfering ribonucleic acid macrophage treatment was performed to investigate the role of AIF1 in macrophage and T lymphocyte activation. RESULTS: Allograft inflammatory factor-1 protein was highly expressed in stenotic KD arteries and colocalized with the macrophage marker CD68. T lymphocyte and interferon pathway genes were significantly upregulated in chronic KD coronary artery tissues. Alpha interferon-induced macrophage expression of CD80 and major histocompatibility complex class II was dependent on AIF1, and macrophage expression of AIF1 was required for antigen-specific T lymphocyte activation. CONCLUSIONS: Allograft inflammatory factor-1, originally identified in posttransplant arterial stenosis, is markedly upregulated in KD stenotic arterial tissues. T lymphocyte and type I interferon responses persist in chronic KD arteritis. Allograft inflammatory factor-1 may play multiple roles linking type I interferon response, macrophage activation, and antigen-specific T lymphocyte activation. These results suggest the likely importance of lymphocyte-myeloid cell cross-talk in the pathogenesis of KD arteritis and can inform selection of new immunotherapies for clinical trials in high-risk KD children.


Assuntos
Arterite/imunologia , Proteínas de Ligação a DNA/metabolismo , Interferons/metabolismo , Ativação de Macrófagos , Síndrome de Linfonodos Mucocutâneos/imunologia , Linfócitos T/imunologia , Adolescente , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose/genética , Arterite/metabolismo , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Linfócitos T CD8-Positivos , Proteínas de Ligação ao Cálcio , Chicago , Criança , Pré-Escolar , Vasos Coronários/patologia , Proteínas de Ligação a DNA/genética , Feminino , Fibrinogênio , Imunofluorescência , Expressão Gênica , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interferons/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas dos Microfilamentos , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/metabolismo , Síndrome de Linfonodos Mucocutâneos/patologia , Receptores de Interferon/genética , Adulto Jovem
3.
J Cell Physiol ; 231(5): 992-1000, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26479868

RESUMO

ß-Arrestins are multifunctional scaffolding proteins that modulate G protein-coupled receptor (GPCR)-dependent and -independent cell signaling pathways in various types of cells. We recently demonstrated that ß-arrestin1 (ß-arr1) deficiency strikingly attenuates dextran sodium sulfate (DSS)-induced colitis in mice. Since DSS-induced colitis is in part dependent on gut epithelial injury, we examined the role of ß-arr1 in intestinal epithelial cells (IECs) using a colon epithelial cell line, SW480 cells. Surprisingly, we found that knockdown of ß-arr1 in SW480 cells enhanced epithelial cell death via a caspase-3-dependent process. To understand the in vivo relevance and potential cell type-specific role of ß-arr1 in colitis development, we generated bone marrow chimeras with ß-arr1 deficiency in either the hematopoietic or non-hematopoietic compartment. Reconstituted chimeric mice were then subjected to DSS-induced colitis. Similar to our previous findings, ß-arr1 deficiency in the hematopoietic compartment protected mice from DSS-induced colitis. However, consistent with the role of ß-arr1 in epithelial apoptosis in vitro, non-hematopoietic ß-arr1 deficiency led to an exacerbated colitis phenotype. To further understand signaling mechanisms, we examined the effect of ß-arr1 on TNF-α-mediated NFκB and MAPK pathways. Our results demonstrate that ß-arr1 has a critical role in modulating ERK, JNK and p38 MAPK pathways mediated by TNF-α in IECs. Together, our results show that ß-arr1-dependent signaling in hematopoietic and non-hematopoietic cells differentially regulates colitis pathogenesis and further demonstrates that ß-arr1 in epithelial cells inhibits TNF-α-induced cell death pathways.


Assuntos
Arrestinas/metabolismo , Colite/induzido quimicamente , Colite/prevenção & controle , Hematopoese , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Colite/patologia , Sulfato de Dextrana , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Hematopoese/efeitos dos fármacos , Humanos , Intestinos/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , beta-Arrestina 1 , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA