Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231952, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660601

RESUMO

Despite remarkable progress in medical sciences, modern man is still fighting the battle against cancer. In 2022, only in the USA, 640 000 deaths and 2 370 000 patients were reported because of cancer. Chemotherapy is the most widely used for cancer treatments. However, chemotherapeutics have severe physicochemical side effects. Therefore, we have prepared poly(amididoamine) dendrimeric carrageenan (CG), sodium alginate (SA) and poly(vinyl alcohol) (PVA) hydrogels by using solution casting methodology. The constituents of hydrogels were cross-linked by mutable quantity of 3-aminopropyl(diethoxy)methyl silane (APDMS). Hydrogels were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscope and atomic force microscopy. Hydrogels exhibited higher swelling volumes in 5-7 pH range. In vitro biodegradation in ribonuclease-A solution and cytocompatibility analysis against DF-1 fibroblasts established their biodegradable and non-toxic nature, which enables them as a suitable carrier for chemotherapeutic compounds. Hence, methotrexate (MTX) as a model drug was loaded on CAP-8 hydrogel and its release was detected by the UV-visible spectrophotometer in phosphate-buffered saline (PBS) solution. In 13.5 h, 81.25% and 77.23% of MTX were released at pH 7.4 (blood pH) and 5.3 (tumour pH) in PBS, respectively. MTX was released by super case II mechanism and best fitted to zero-order and Korsmeyer-Peppas model. The synthesized APDMS cross-linked CG/SA/PVA dendrimeric hydrogels could be an efficient model platform for the effective delivery of MTX in cancer treatments.

2.
Int J Biol Macromol ; 263(Pt 1): 130231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368975

RESUMO

Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.


Assuntos
Amantadina , Tioureia , Humanos , Tioureia/farmacologia , Tioureia/química , Células HEK293 , Simulação de Acoplamento Molecular , Amantadina/farmacologia , DNA/química , Elastase Pancreática
3.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985680

RESUMO

Bis-acyl-thiourea derivatives, namely N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N'-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds' interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound-DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40-120 µM.


Assuntos
Neoplasias Encefálicas , Urease , Humanos , Simulação de Acoplamento Molecular , Células HEK293 , Antibacterianos/farmacologia , DNA/química , Tioureia/química , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia
4.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056668

RESUMO

Imidazolidine and thiazolidine-based isatin derivatives (IST-01-04) were synthesized, characterized, and tested for their interactions with ds-DNA. Theoretical and experimental findings showed good compatibility and indicated compound-DNA binding by mixed mode of interactions. The evaluated binding parameters, i.e., binding constant (Kb), free energy change (ΔG), and binding site sizes (n), inferred comparatively greater and more spontaneous binding interactions of IST-02 and then IST-04 with the DNA, among all compounds tested under physiological pH and temperature (7.4, 37 °C). The cytotoxic activity of all compounds was assessed against HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and HuH-7 (liver carcinoma), as well as normal HEK-293 (human embryonic kidney) cell lines. Among all compounds, IST-02 and 04 were found to be cytotoxic against HuH-7 cell lines with percentage cell toxicity of 75% and 66%, respectively, at 500 ng/µL dosage. Moreover, HEK-293 cells exhibit tolerance to the increasing drug concentration, suggesting these two compounds are less cytotoxic against normal cell lines compared to cancer cell lines. Hence, both DNA binding and cytotoxicity studies proved imidazolidine (IST-02) and thiazolidine (IST-04)-based isatin derivatives as potent anticancer drug candidates among which imidazolidine (IST-02) is comparatively the more promising.


Assuntos
Antineoplásicos/farmacologia , DNA/metabolismo , Imidazolidinas/química , Isatina/farmacologia , Neoplasias/tratamento farmacológico , Tiazolidinas/química , Antineoplásicos/química , Proliferação de Células , Células HeLa , Humanos , Isatina/química , Células MCF-7 , Estrutura Molecular , Neoplasias/patologia , Relação Estrutura-Atividade
5.
Bioorg Chem ; 109: 104707, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33639362

RESUMO

1-(adamantane-1-carbonyl-3-(1-naphthyl)) thiourea (C22H24N2OS (4), was synthesized by the reaction of freshly prepared adamantane-1-carbonyl chloride from corresponding acid (3) with ammonium thiocyanate in 1:1 M ratio in dry acetone to afford the adamantane-1-carbonyl isothiocyanate (2) in situ followed by treatment with 1-naphthyl amine (3). The structure was established by elemental analyses, FTIR, 1H, 13C NMR and mass spectroscopy. The molecular and crystal structure were determined by single crystal X-ray analysis. It belongs to triclinic system P - 1 space group with a = 6.7832(5) Å, b = 11.1810(8) Å, c = 13.6660(10) Å, α = 105.941(6)°, ß = 103.730(6)°, γ = 104.562(6)°, Z = 2, V = 910.82(11) Å3. The naphthyl group is almost planar. In the crystal structure, intermolecular CH···O hydrogen bonds link the molecules into centrosymmetric dimers, enclosing R22(14) ring motifs, while the intramolecular NH···O hydrogen bonds enclose S(6) ring motifs, in which they may be effective in the stabilization of the structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H … H (59.3%), H … C/C … H (19.8%) and H … S/S … H (10.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. DFT, molecular docking and urease inhibition studies revealed stability and electron withdrawing nature of 4 as compared to DNA base pairs and residues of urease. The DNA binding results from docking, UV- visible spectroscopy, and viscosity studies indicated significant binding of 4 with the DNA via intercalation and groove binding. Further investigation of the compound was done on hepatocellular carcinoma; Huh-7 cell line as well as normal human embryonic kidney; Hek-293 cell line. The compound showed significant cytotoxic activity against Huh-7 cells in comparison to normal Hek-293 cells indicating selective cytotoxicity towards cancer cells.


Assuntos
Adamantano/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Tioureia/análogos & derivados , Urease/metabolismo , Adamantano/síntese química , Adamantano/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular , Cristalografia por Raios X , DNA/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia , Urease/genética
6.
J Biomol Struct Dyn ; 39(10): 3548-3564, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32397836

RESUMO

The work presented in this paper describes the synthesis of two new aryl Schiff bases [(E)-N-(4-(benzyloxy)-3-methoxybenzylidene)-5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine] (ASB-1) and [(E)-N-(4-(benzyloxy)benzylidene)-5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine] (ASB-2). These compounds were characterized by different analytical techniques and then studied for DNA binding. Binding studies were carried out at neutral pH (7.0) and at 37 °C by theoretical and experimental methods including DFT, molecular docking, spectroscopy (UV-visible, fluorescence), cyclic voltammetry (CV) and viscometry. Further investigations of these compounds were done on hepatocellular carcinoma; Huh-7 cancer cell line. Binding constant, free energy change and binding site size, i.e. Kb, ΔG and n were evaluated which indicated that both ASB-1 and ASB-2 bind significantly and spontaneously with the DNA. However, data revealed relatively greater binding of ASB-1 with DNA. Spectral and voltammetric results were found supportive of each other. Binding site sizes and viscosity measurements verified the mixed binding mode of interactions as observed in molecular docking analysis, i.e. intercalation with groove binding. DNA binding studies were very well correlated with the in-vitro studies performed on Huh-7 cell line as well as normal HEK-293 cell lines. The compound ASB-1 not only showed greater binding affinity toward DNA but also showed greater anticancer potency with least IC50 value as compared to ASB-2.


Assuntos
Antineoplásicos , Tiadiazóis , Antineoplásicos/farmacologia , DNA , Células HEK293 , Humanos , Ibuprofeno/farmacologia , Simulação de Acoplamento Molecular , Bases de Schiff , Tiadiazóis/farmacologia
8.
Arch Biochem Biophys ; 666: 83-98, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30951683

RESUMO

Aroylthiourea derivatives of ciprofloxacin drug - [1-cyclopropyl-6-fluoro-7-(4-((4-methoxybenzoyl)carbamothioyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid] ATU-1, [1-cyclopropyl-7-(4-((2,4-dibromobenzoyl)carbamothioyl)piperazin-1-yl)-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid] ATU-2, and [1-cyclopropyl-7-(4-((3,5-dinitrobenzoyl)carbamothioyl)piperazin-1-yl)-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid] ATU-3 were synthesized, characterized and investigated for DNA binding at stomach pH (4.7) and at 37 °C. All findings by using DFT, molecular docking, spectroscopic (UV-, fluorescence; FL-), cyclic voltammetric (CV) and viscometric techniques revealed that these compounds have the potency to bind with DNA via a mixed mode of interaction. The binding affinity of ATU-1 was evaluated comparatively greater with Kb × 104/M-1 (docking; 5.55, UV-; 7.93, FL-; 5.62, CV; 6.06), ΔG/kJmol-1(docking; -27.07, UV-; -29.07, FL-; -28.18, CV; -28.38) and n (FL-; 1.20, CV; 2.72). Stern-Volmer quenching constant (Ksv) further pointed towards comparatively greater binding affinity of ATU-1 for DNA, while bimolecular quenching constant (Kq) values showed the involvement of static quenching mechanism in the compound - DNA interaction. Comparatively lesser IC50 (7.1 µM) value obtained from biological work on Huh-7 cancer cell line further confirmed the greater anticancer potential of ATU-1 than that of ATU-2&3.


Assuntos
Antibacterianos/química , Ciprofloxacina/química , DNA/química , Técnicas Eletroquímicas/métodos , Análise Espectral/métodos , Tioureia/química , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Simulação de Acoplamento Molecular
9.
J Photochem Photobiol B ; 189: 104-118, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30339990

RESUMO

Two new 1,3,4-thiadiazole derivatives of ibuprofen and ciprofloxacin namely {(5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine)} 1 and {(3-(5-amino-1,3,4-thiadiazol-2-yl)-1-cyclopropyl-6-fluoro-7-(piperazin-1-yl)quinolin-4(1H)-one)} 2 were synthesized and characterized by spectroscopic and elemental analysis. DFT and molecular docking were done initially for theoretical binding possibilities of the investigated compounds. In vitro DNA binding investigations were carried out with UV-visible spectroscopic, fluorescence spectroscopic, cyclic voltammetric (CV) experiments under physiological conditions of the stomach (4.7) and blood (7.4) pH and at normal body temperature (37 °C). Both theoretical and experimental results suggested spontaneous and significant intercalative binding of the compounds with DNA. Kinetic and thermodynamic parameters (Kb, ΔG) were evaluated greater for compound 2 which showed comparatively more binding and more spontaneity of 2 than 1 to bind with DNA at both pH values. Binding site sizes were found greater (n > 1) and revealed the possibility of other sites for interactions along with intercalation. Overall results for DNA binding were found more significant for 2 at Stomach (4.7) pH. Viscometric studies further verified intercalation as a prominent binding mode for both compounds. IC50 values obtained from human hepatocellular carcinoma (Huh-7) cell line studies revealed 2 as potent anticancer agent than 1 as value found 25.75 µM (lesser than 50 µM). Theoretical and experimental DNA binding studies showed good correlation with cancer cell (Huh-7) line activity of 1 and 2 and further suggested that these compounds could act as potential anti-cancer drug candidates.


Assuntos
Antineoplásicos/farmacologia , Ciprofloxacina/análogos & derivados , DNA/metabolismo , Ibuprofeno/análogos & derivados , Linhagem Celular Tumoral , Ciprofloxacina/síntese química , Humanos , Concentração de Íons de Hidrogênio , Ibuprofeno/síntese química , Substâncias Intercalantes , Cinética , Simulação de Acoplamento Molecular , Análise Espectral , Termodinâmica , Tiadiazóis/química
10.
PLoS One ; 13(10): e0205764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30372448

RESUMO

Pharmacodynamic interactions of three anthracycline antibiotics namely doxorubicin (DXH), epirubicin (EpiDXH) and daunorubicin (DNR) with DNA in the absence and presence of ascorbic acid (AA) as natural additive were monitored under physiological conditions (pH = 7.4, 4.7 and T = 309.5K). Route-1 (Anthracycline-AA-DNA) and Route-2 (Anthracycline-DNA-AA) were adopted to see the interactional behavior by cyclic voltammetry (CV) and UV-visible spectroscopy. In comparison to Route-2; voltammetric and spectral responses as well as binding constant (Kb) and Gibb's free energy change (ΔG) values revealed strongest and more favorable interaction of anthracycline-AA complex with DNA via Route-1. Kb, s (binding site sizes) and ΔG evaluated from experimental (CV, UV-Vis) and theoretical (molecular docking) findings showed enhanced binding strength of tertiary complexes as compared to binary drug-DNA complexes. The results were found comparatively better at pH 7.4. Consistency was observed in binding parameters evaluated from experimental and theoretical techniques. Diffusion coefficients (Do) and heterogeneous electron transfer rate constant (ks,h) confirmed the formation of complexes via slow diffusion kinetics. Percent cell inhibition (%Cinh) of anthracyclines for non-small cell cancer cell lines (NSCCLs) H-1299 and H-157 were evaluated higher in the presence of AA which further complimented experimental and theoretical results.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , DNA/metabolismo , Neoplasias/tratamento farmacológico , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/uso terapêutico , Ácido Ascórbico/química , Ácido Ascórbico/uso terapêutico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/química , Daunorrubicina/química , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêutico , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Interações Medicamentosas , Epirubicina/química , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular
11.
Appl Biochem Biotechnol ; 186(4): 1090-1110, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29934844

RESUMO

Cancer is developed by rapid, uncontrolled, and abnormal cell proliferation and one of the leading causes of deaths worldwide in human beings. For the remedial measures of preventing different types of cancers, one of the research domains that have gained substantial importance in medical science is the development of new metallo-drugs and their investigations as potential anticancer drug agents by using various analytical techniques. Since metal-based complexes show weak absorption bands, electrochemical methods are considered more feasible and preferable over spectroscopic methods for easy characterization. Due to closer resemblance of electrochemical and biological processes, cyclic voltammetry among different electrochemical methods is considered the most versatile for the study of in-vitro metal-based drug-DNA interactions in terms of changes in the redox activities. Current potential data of a metal complex leads to determine binding kinetics in terms of binding constant and binding site size that involve determining the binding mode of drug with DNA, i.e., electrostatic interactions, intercalation, or minor-major groove binding. Binding parameters and modes of interactions, further, help to develop the mechanism of action of drug with the DNA. In this review, we emphasize on cyclic voltammetric DNA binding studies on some metal complexes that have been carried out in the last three decades for the investigation of their anticancer potentials.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , DNA de Neoplasias/química , Metais/química , Neoplasias/química , Animais , Antineoplásicos/uso terapêutico , Complexos de Coordenação/uso terapêutico , DNA de Neoplasias/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Metais/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
12.
J Photochem Photobiol B ; 125: 70-82, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23748131

RESUMO

A carboxylic acid ligand, (Z)-4-(4-acetylphenylamino)-4-oxobut-2-enoic acid (APA-1), and its triphenyl-(APA-2) and tributyl-tin(IV) (APA-3) compounds have been synthesized and investigated for their binding with ds.DNA using UV-visible spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and viscosity measurements under physiological conditions of pH and temperature. The experimental results from all techniques i.e. binding constant (Kb), binding site size (n) and free energy change (ΔG) were in good agreement and inferred spontaneous compound-DNA complexes formation via intercalation. Among all the compounds APA-3 showed comparatively greater binding at pH 4.7 as evident from its greater Kb values {APA-3: Kb: 5.63×10(4)M(-1) (UV); 7.94×10(4)M(-1) (fluorescence); 9.91×10(4)M(-1) (CV)}. Electrochemical processes of compounds before and after the addition of DNA were found diffusion controlled. Among all compounds, APA-3 exhibited best antitumor activity.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , DNA/química , Compostos Orgânicos de Estanho/química , Agrobacterium tumefaciens , Antineoplásicos/farmacologia , Ácidos Carboxílicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Eletroquímica , Ligantes , Compostos Orgânicos de Estanho/farmacologia , Tumores de Planta/etiologia , Solanum tuberosum , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Viscosidade
13.
J Photochem Photobiol B ; 117: 228-39, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23159505

RESUMO

Ni(II), Cu(II) and Zn(II) metal complexes of N-phthaloylglycine were synthesized, characterized, reported for single crystal X-ray diffraction analysis for Ni(II) complex, and investigated for their binding with DNA under physiological conditions, using spectroscopic (UV-visible and fluorescence) and hydrodynamic techniques. Experimental results from both spectroscopic methods were comparable and further supported by viscosity measurements. Binding constant "K(b)" obtained from both spectroscopic methods revealed significant binding of compounds with DNA via intercalation. Among all compounds comparatively good DNA binding was found for Zn(II) complex. Free energies of compounds-DNA interactions indicated spontaneity of their binding. Dynamic and bimolecular enhancement values disclose static process involved in compounds-DNA complex formation. All compounds exhibited broad range antibacterial, while Zn(II) complex exhibited best antitumor activity.


Assuntos
DNA/metabolismo , Glicina/análogos & derivados , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Bioensaio , Compostos de Bifenilo/química , Técnicas de Química Sintética , Cobre/química , Cristalografia por Raios X , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Fungos/efeitos dos fármacos , Glicina/química , Concentração de Íons de Hidrogênio , Níquel/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Picratos/química , Temperatura , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA