Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Biomedicines ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672280

RESUMO

BACKGROUND: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. METHODS: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. FINDINGS: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. INTERPRETATION: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.

2.
Biol Trace Elem Res ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216793

RESUMO

3-chloro-1,2-propanediol (3-MCPD) is a member of the group of pollutants known as chloropropanols and is considered a genotoxic carcinogen. Due to the occurrence of 3-MCPD, which cannot be avoided in multiplexed food processes, it is necessary to explore novel agents to reduce or prevent the toxicity of 3-MCPD. Many recent studies on boron compounds reveal their superior biological roles such as antioxidant, anticancer, and antigenotoxic properties. In the current investigation, we have evaluated in vitro cytotoxic, oxidative, and genotoxic damage potential of 3-MCPD on human whole blood cultures and the alleviating effect of boric acid (BA) and borax (BX) for 72 h. In our in vitro experiments, we have treated blood cells with BA and BX (2.5, 5, and 10 mg/L) and 3-MCPD (at IC50 of 11.12 mg/l) for 72 h to determine the cytotoxic damage potential by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) release assays. Oxidative damage was assessed using total antioxidant capacity (TAC) and malondialdehyde (MDA) levels. Genotoxicity evaluations were performed using chromosome aberrations (CAs) and 8-hydroxy deoxyguanosine (8-OHdG) assays. The result of our experiments showed that the 3-MCPD compound induced cytotoxicity, oxidative stress, and genotoxicity in a clear concentration-dependent manner. BA and BX reduced cytotoxicity, oxidative stress, and genotoxicity induced by 3-MCPD. In conclusion, BA and BX are safe and non-genotoxic under the in vitro conditions and can alleviate cytotoxic, oxidative, and genetic damage induced by 3-MCPD in the human blood cells. Our findings suggest that dietary boron supplements may offer a novel strategy for mitigating hematotoxicity induced by xenobiotics, including 3-MCPD.

3.
Anticancer Agents Med Chem ; 24(1): 39-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957910

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM. METHODS: The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY- 5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses. RESULTS: Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2- (cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. CONCLUSION: Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.


Assuntos
Antineoplásicos , Glioblastoma , Neuroblastoma , Animais , Humanos , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proliferação de Células
4.
J Enzyme Inhib Med Chem ; 39(1): 2286925, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062550

RESUMO

Cancer and antibiotic-resistant bacterial infections are significant global health challenges. The resistance developed in cancer treatments intensifies therapeutic difficulties. In addressing these challenges, this study synthesised a series of N,N'-dialkyl urea derivatives containing methoxy substituents on phenethylamines. Using isocyanate for the efficient synthesis yielded target products 14-18 in 73-76% returns. Subsequently, their antibacterial and anticancer potentials were assessed. Cytotoxicity tests on cancer cell lines, bacterial strains, and a healthy fibroblast line revealed promising outcomes. All derivatives demonstrated robust antibacterial activity, with MIC values ranging from 0.97 to 15.82 µM. Notably, compounds 14 and 16 were particularly effective against the HeLa cell line, while compounds 14, 15, and 17 showed significant activity against the SH-SY5Y cell line. Importantly, these compounds had reduced toxicity to healthy fibroblast cells than to cancer cells, suggesting their potential as dual-functioning agents targeting both cancer and bacterial infections.


Assuntos
Antineoplásicos , Infecções Bacterianas , Neuroblastoma , Humanos , Células HeLa , Ureia/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
5.
RSC Med Chem ; 14(11): 2315-2326, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020070

RESUMO

In this study, combining the thiazole and cinnamoyl groups into the styryl-thiazole scaffold, a series of novel styryl-thiazole hybrids (6a-p) was rationally designed, synthesized, and evaluated by the multi-target-directed ligands strategy as potential candidates for the treatment of Alzheimer's disease (AD). Hybrids 6e and 6i are the most promising among the synthesized hybrids since they are able to significantly increase cell viabilities in Aß1-42-exposed-human neuroblastoma cell line (6i at the concentration of 50 µg mL-1 and 6e at the concentration of 25 µg mL-1 resulted in ∼34% and ∼30% increase in cell viabilities, respectively). Compounds 6e and 6i exhibit highly AChE inhibitory properties in the experimental AD model at 375.6 ± 18.425 mU mL-1 and 397.6 ± 32.152 mU mL-1, respectively. Moreover, these data were also confirmed by docking studies and in vitro enzyme inhibition assays. Compared to hybrid 6e and according to the results, 6i also has the highest potential against Aß1-42 aggregation with over 80% preventive activity. The in silico prediction of the physicochemical properties confirms that 6i possesses a better profile compared to 6e. Therefore, compound 6i presents a promising multi-targeted active molecular profile for treating AD considering the multifactorial nature of AD, and it is reasonable to deepen its mechanisms of action in an in vivo experimental model of AD.

6.
Ulus Travma Acil Cerrahi Derg ; 29(9): 987-995, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37681722

RESUMO

BACKGROUND: The treatment of patients presenting with the diagnosis of incarcerated and/or strangulated inguinal hernia is mostly surgery. If strangulation and necrosis are present, the need for laparotomy arises, which may increase the risk of morbidity. Currently, it is not possible to clearly determine whether there is bowel ischemia and necrosis before surgery. In this study, we aimed to investigate the clinical efficacy of the thiol-disulfide homeostasis, delta neutrophil index (DNI), and ischemia-modified albumin (IMA) parameters in incarcerated and strangulated hernia cases. METHODS: Patients that presented to the general surgery outpatient clinic due to inguinal hernia or to the emergency department of the hospital with a preliminary diagnosis of incarcerated and/or strangulated hernia in April 2021-November 2021 were included in the study. The patients were divided into the following four groups: patients that underwent elective repair for inguinal hernia (Group 1), those who were followed up without surgery due to incarcerated hernia (Group 2), those who underwent hernia repair without bowel resection due to incarceration (Group 3), and those who underwent bowel resection due to strangulation (Group 4). Group 1 was defined as the control group, while Groups 2, 3, and Group 4 were evaluated as the incarcerated/strangulated hernia group. The demographic data of the patients, length of hospital stay, body mass index, comorbidities, medical history and physical examina-tion findings, radiological examinations, treatments applied, white blood cell (WBC) count, lactate, and DNI, thiol-disulfide and IMA parameters were evaluated. RESULTS: The WBC count, disulfide/native thiol, disulfide/total thiol, and IMA values were significantly higher in the incarcerated/strangulated hernia group than in the control group, while the native thiol and total thiol values were higher in the latter than in the former (P<0.05). There was no statistically significant difference between the groups in terms of lactate (P>0.05), but the mean WBC count was higher in Group 4 compared to Group 1, and the mean DNI was significantly higher among the patients who underwent bowel resection and anastomosis than in those that were followed up and discharged (P<0.05). CONCLUSION: We consider that the preoperative evaluation of the thiol-disulfide homeostasis, IMA, and DNI parameters in incarcerated/strangulated hernia cases can be an effective and easily applicable method in predicting difficulties that may be encountered intraoperatively and the surgical procedure to be applied to the patient.


Assuntos
Hérnia Inguinal , Neutrófilos , Humanos , Hérnia Inguinal/cirurgia , Biomarcadores , Albumina Sérica , Resultado do Tratamento , Ácido Láctico
7.
Drug Chem Toxicol ; : 1-13, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36606327

RESUMO

Nowadays, the unique features of nanoparticles (NPs) have encouraged new applications in different areas including biology, medicine, agriculture, and electronics. Their quick joining into daily life not only enhances the uses of NPs in a wide range of modern technologies but also their release into the aquatic environment causes inevitable environmental concerns. On the other hand boron exhibits key physiological effects on biological systems. This research was designed for evaluating the toxicity of magnetite nanoparticles (Fe3O4-MNPs) on aquatic organisms and obtaining data for the information gap in this area. In this study, Rainbow trout (Oncorhynchus mykiss) was considered as an aquatic indicator, and trials were designed as Ulexite (a boron mineral, UX) treatment against exposure to Fe3O4-MNPs. Synthesized and characterized Fe3O4-MNPs were exposed to rainbow trouts in wide spectrum concentrations (0.005-0.08 mL/L) to analyze its lethal dose (LC50) and cytoprotective properties by UX treatment were assessed against Fe3O4-MNPs applications for 96 h. For the initial toxicity analysis, hematological parameters (blood cell counts) were examined in experimental groups and micronucleus (MN) assay was performed to monitor nuclear abnormalities after exposure to NPs. Biochemical analyzes in both blood and liver samples were utilized to assess antioxidant/oxidative stress and inflammatory parameters. Also, 8-hydroxy-2'-deoxyguanosine (8-OHdG) assay was used to investigate oxidative DNA lesions and Caspase-3 analysis was performed on both blood and liver tissues to monitor apoptotic cell death occurrence. When antioxidant enzymes in blood and liver tissue were examined, time-dependent decreases in activity were determined in SOD, CAT, GPx, and GSH enzymes, while increased levels of MDA and MPO parameters were observed in respect to Fe3O4-MNPs exposure. It was found that TNF-α, Il-6 levels were enhanced against Fe3O4-MNPs treatment, but Nrf-2 levels were decreased at the 46th and 96th h. In the 96th application results, all parameters were statistically significant (p < 0.05) in blood and liver tissue, except for the IL-6 results. It was determined that the frequency of MN, the level of 8-OHdG and caspase-3 activity increased in respect to Fe3O4-MNPs exposure over time. Treatment with UX alleviated Fe3O4-MNPs-induced hematotoxic and hepatotoxic alterations as well as oxidative and genetic damages. Our findings offer strong evidence for the use of UX as promising, safe and natural protective agents against environmental toxicity of magnetite nanoparticles.

8.
Transl Neurodegener ; 12(1): 4, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703196

RESUMO

BACKGROUND: Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. METHODS: Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. RESULTS: We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. CONCLUSION: Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131.


Assuntos
Doença de Alzheimer , Animais , Ratos , Doença de Alzheimer/metabolismo , Resultado do Tratamento , Cognição , Método Duplo-Cego
9.
Medicina (Kaunas) ; 60(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38256343

RESUMO

Background and Objectives: Favipiravir (FPV) is an antiviral medication and has an inhibitory effect on Cytochrome P450 (CYP2C8) protein, which is mainly involved in drug metabolism in the liver, and the expression of this gene is known to be enhanced in neuronal cells. The metabolization of Paclitaxel (PTX), a chemotherapeutic drug used in cancer patients, was analyzed for the first time in the human SH-SY5Y neuroblastoma cell line for monitoring possible synergistic effects when administered with FPV. Materials and Methods: Further, in vitro cytotoxic and genotoxic evaluations of FPV and PTX were also performed using wide concentration ranges in a human fibroblast cell culture (HDFa). Nuclear abnormalities were examined under a fluorescent microscope using the Hoechst 33258 fluorescent staining technique. In addition, the synergistic effects of these two drugs on cultured SH-SY5Y cells were determined by MTT cell viability assay. In addition, the death mechanisms that can occur in SHSY-5Y were revealed by using the flow cytometry technique. Results: Cell viability analyses on the HDFa healthy cell culture showed that both FPV and PTX have inhibitory effects at higher concentrations. On the other hand, there were no significant differences in nuclear abnormality numbers when both of the compounds were applied together. Cell viability analyses showed that FPV and PTX applications have higher cytotoxicity, which indicated synergistic toxicity against the SHSY-5Y cell line. Also, PTX exhibited higher anticancer properties against the neuroblastoma cell line when applied with FPV, as shown in both cytotoxicity and flow cytometry analyses. Conclusions: In light of our findings, the anticancer properties of PTX can be enhanced when the drug application is coupled with FPV exposure. Moreover, these results put forth that the anticancer drug dosage should be evaluated carefully in cancer patients who take COVID-19 treatment with FPV.


Assuntos
Amidas , Neuroblastoma , Paclitaxel , Pirazinas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Sinergismo Farmacológico , Tratamento Farmacológico da COVID-19 , Neuroblastoma/tratamento farmacológico
10.
Materials (Basel) ; 15(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500178

RESUMO

Nanobiotechnology influences many different areas, including the medical, food, energy, clothing, and cosmetics industries. Considering the wide usage of nanomaterials, it is necessary to investigate the toxicity potentials of specific nanosized molecules. Boron-containing nanoparticles (NPs) are attracting much interest from scientists due to their unique physicochemical properties. However, there is limited information concerning the toxicity of boron-containing NPs, including cobalt boride (Co2B) NPs. Therefore, in this study, Co2B NPs were characterized using X-ray crystallography (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques. Then, we performed 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, and neutral red (NR) assays for assessing cell viability against Co2B NP exposure on cultured human pulmonary alveolar epithelial cells (HPAEpiC). In addition, whole-genome microarray analysis was carried out to reveal the global gene expression differentiation of HPAEpiC cells after Co2B NP application. The cell viability tests unveiled an IC50 value for Co2B NPs of 310.353 mg/L. The results of our microarray analysis displayed 719 gene expression differentiations (FC ≥ 2) among the analyzed 40,000 genes. The performed visualization and integrated discovery (DAVID) analysis revealed that there were interactions between various gene pathways and administration of the NPs. Based on gene ontology biological processes analysis, we found that the P53 signaling pathway, cell cycle, and cancer-affecting genes were mostly affected by the Co2B NPs. In conclusion, we suggested that Co2B NPs would be a safe and effective nanomolecule for industrial applications, particularly for medical purposes.

11.
J Toxicol ; 2022: 3775194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36444193

RESUMO

The tripeptide H-Gly-Pro-Glu-OH (GPE) and its analogs began to take much interest from scientists for developing effective novel molecules in the treatment of several disorders including Alzheimer's disease, Parkinson's disease, and stroke. The peptidomimetics of GPEs exerted significant biological properties involving anti-inflammatory, antiapoptotic, and anticancer properties. The assessments of their hematological toxicity potentials are critically required for their possible usage in further preclinical and clinical trials against a wide range of pathological conditions. However, there is so limited information on the safety profiling of GPE and its analogs on human blood tissue from cytotoxic, oxidative, and genotoxic perspectives. And, their embryotoxicity potentials were not investigated yet. Therefore, in this study, measurements of mitochondrial viability (using MTT assay) and lactate dehydrogenase (LDH) release as well as total antioxidant capacity (TAC) assays were performed on cultured human whole blood cells after treatment with GPE and its three novel peptidomimetics for 72 h. Sister chromatid exchange (SCE), micronucleus (MN), and 8-oxo-2-deoxyguanosine (8-OH-dG) assays were performed for determining the genotoxic damage potentials. In addition, the nuclear division index (NDI) was figured out for revealing their cytostatic potentials. Embryotoxicity assessments were performed on cultured human pluripotent NT2 embryonal carcinoma cells by MTT and LDH assays. The present results from cytotoxicity, oxidative, genotoxicity, and embryotoxicity testing clearly propounded that GPEs had good biosafety profiles and were trouble-free from the toxicological point of view. Noncytotoxic, antioxidative, nongenotoxic, noncytostatic, and nonembryotoxic features of GPE analogs are worthwhile exploring further and may exert high potentials for improving the development of novel disease-modifying agents.

12.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957121

RESUMO

Alzheimer's disease (AD) is considered as the most common neurodegenerative disease. Extracellular amyloid beta (Aß) deposition is a hallmark of AD. The options based on degradation and clearance of Aß are preferred as promising therapeutic strategies for AD. Interestingly, recent findings indicate that boron nanoparticles not only act as a carrier but also play key roles in mediating biological effects. In the present study, the aim was to investigate the effects of different concentrations (0−500 mg/L) of hexagonal boron nitride nanoparticles (hBN-NPs) against neurotoxicity by beta amyloid (Aß1-42) in differentiated human SH-SY5Y neuroblastoma cell cultures for the first time. The synthesized hBN-NPs were characterized by X-ray diffraction (XRD) measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Aß1-42-induced neurotoxicity and therapeutic potential by hBN-NPs were assessed on differentiated SH-SY5Y cells using MTT and LDH release assays. Levels of total antioxidant capacity (TAC) and total oxidant status (TOS), expression levels of genes associated with AD and cellular morphologies were examined. The exposure to Aß1-42 significantly decreased the rates of viable cells which was accompanied by elevated TOS level. Aß1-42 induced both apoptotic and necrotic cell death. Aß exposure led to significant increases in expression levels of APOE, BACE 1, EGFR, NCTSN and TNF-α genes and significant decreases in expression levels of ADAM 10, APH1A, BDNF, PSEN1 and PSENEN genes (p < 0.05). All the Aß1-42-induced neurotoxic insults were inhibited by the applications with hBN-NPs. hBN-NPs also suppressed the remarkable elevation in the signal for Aß following exposure to Aß1-42 for 48 h. Our results indicated that hBN-NPs could significantly prevent the neurotoxic damages by Aß. Thus, hBN-NPs could be a novel and promising anti-AD agent for effective drug development, bio-nano imaging or drug delivery strategies.

13.
Toxics ; 10(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36006107

RESUMO

Genetic, neuropathological and biochemical investigations have revealed meaningful relationships between aluminum (Al) exposure and neurotoxic and hematotoxic damage. Hence, intensive efforts are being made to minimize the harmful effects of Al. Moreover, boron compounds are used in a broad mix of industries, from cosmetics and pharmaceuticals to agriculture. They affect critical biological functions in cellular events and enzymatic reactions, as well as endocrinal and mineral metabolisms. There are limited dose-related data about boric acid (BA) and other boron compounds, including colemanite (Col), ulexite (UX) and borax (BX), which have commercial prominence. In this study, we evaluate boron compounds' genetic, cytological, biochemical and pathological effects against aluminum chloride (AlCl3)-induced hematotoxicity and neurotoxicity on different cell and animal model systems. First, we perform genotoxicity studies on in vivo rat bone marrow cells and peripheric human blood cultures. To analyze DNA and chromosome damage, we use single cell gel electrophoresis (SCGE or comet assay) and micronucleus (MN) and chromosome aberration (CA) assays. The nuclear division index (NDI) is used to monitor cytostasis. Second, we examine the biochemical parameters (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total antioxidant capacity (TAC) and total oxidative status (TOS)) to determine oxidative changes in blood and brain. Next, we assess the histopathological alterations by using light and electron microscopes. Our results show that Al increases oxidative stress and genetic damage in blood and brain in vivo and in vitro studies. Al also led to severe histopathological and ultrastructural alterations in the brain. However, the boron compounds alone did not cause adverse changes based on the above-studied parameters. Moreover, these compounds exhibit different levels of beneficial effects by removing the harmful impact of Al. The antioxidant, antigenotoxic and cytoprotective effects of boron compounds against Al-induced damage indicate that boron may have a high potential for use in medical purposes in humans. In conclusion, our analysis suggests that boron compounds (especially BA, BX and UX) can be administered to subjects to prevent neurodegenerative and hematological disorders at determined doses.

14.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897815

RESUMO

The search for an innovative and effective drug delivery system that can carry and release targeted drugs with enhanced activity to treat Alzheimer's disease has received much attention in the last decade. In this study, we first designed a boron-based drug delivery system for effective treatment of AD by integrating the folic acid (FA) functional group into hexagonal boron nitride (hBN) nanoparticles (NPs) through an esterification reaction. The hBN-FA drug carrier system was assembled with a new drug candidate and a novel boron-based hybrid containing an antioxidant as BLA, to constitute a self-assembled AD nano transport system. We performed molecular characterization analyses by using UV-vis spectroscopy, Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS) and Zeta potential investigations. Second, we tested the anti-Alzheimer properties of the carrier system on a differentiated neuroblastoma (SHSY5-Y) cell line, which was exposed to beta-amyloid (1-42) peptides to stimulate an experimental in vitro AD model. Next, we performed cytotoxicity analyses of synthesized molecules on the human dermal fibroblast cell line (HDFa) and the experimental AD model. Cytotoxicity analyses showed that even higher concentrations of the carrier system did not enhance the toxicological outcome in HDFa cells. Drug loading analyses reported that uncoated hBN nano conjugate could not load the BLA, whereas the memantine loading capacity of hBN was 84.3%. On the other hand, memantine and the BLA loading capacity of the hBN-FA construct was found to be 95% and 97.5%, respectively. Finally, we investigated the neuroprotective properties of the nano carrier systems in the experimental AD model. According to the results, 25 µg/mL concentrations of hBN-FA+memantine (94% cell viability) and hBN-FA+BLA (99% cell viability) showed ameliorative properties against beta-amyloid (1-42) peptide toxicity (50% cell viability). These results were generated through the use of flow cytometry, acetylcholinesterase (AChE) and antioxidant assays. In conclusion, the developed drug carrier system for AD treatment showed promising potential for further investigations and enlightened neuroprotective capabilities of boron molecules to treat AD and other neurodegenerative diseases. On the other hand, enzyme activity, systematic toxicity analyses, and animal studies should be performed to understand neuroprotective properties of the designed carrier system comprehensively.


Assuntos
Doença de Alzheimer , Nanopartículas , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Boro , Compostos de Boro , Portadores de Fármacos/uso terapêutico , Ácido Fólico/uso terapêutico , Humanos , Memantina/uso terapêutico , Nanopartículas/química
15.
Neurotox Res ; 40(5): 1360-1368, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35867270

RESUMO

Neuroblastoma is the most common solid tumor in children. New treatment approaches are needed because of the harmful side effects and costs of the methods used in the treatment of neuroblastoma. Medicinal and aromatic plants are important for new treatment approaches due to their minimal side effects and economic advantages. Therefore, the present study was carried out to examine the cytotoxic effect of Chaerophyllum macropodum extract on human neuroblastoma (SH-SY5Y) and fibroblast (HDFa) cell lines. 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase release (LDH) assays were used to determine the cytotoxic effect of C. macropodum. The extracts were analyzed for their phenolic content by HPLC-PDA. Major components were determined as 63.600% o-coumaric acid, 15.606% catechine hydrate, 8.713% rosmarinic acid, 4.376% clorogenic acid, and 3.972% salicylic acid. The obtained results from cytotoxicity testing revealed that C. macropodum exerted a significant cytotoxic effect on human neuroblastoma cells at all tested concentrations (p < 0.05). But it did not lead to any cytotoxic potential on human fibroblasts. As a result, the obtained data clearly revealed C. macropodum exerted a selective cytotoxic action on neuroblastoma cells for the first time.


Assuntos
Antineoplásicos , Neuroblastoma , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Brometos/farmacologia , Brometos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Criança , Ácidos Cumáricos/uso terapêutico , Humanos , Lactato Desidrogenases , Neuroblastoma/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ácido Salicílico/farmacologia , Ácido Salicílico/uso terapêutico
16.
Curr Drug Deliv ; 19(8): 860-873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34963433

RESUMO

Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases, accounting for 60% of all dementia cases. AD is a progressive neurodegenerative disease that occurs due to the production of ß-amyloid (Aß) protein and accumulation of hyper-phosphorylated tau protein; it causes breakage in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment, or slowing down its progression. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aß accumulations, hyper-phosphorylated tau proteins, mitochondrial dysfunction, and oxidative stress, resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aß-induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerts neuroprotection via preventing Aß-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in preventing Aß-induced neurotoxicity, protecting against free radical attacks, and exhibiting enzyme inhibitions and evaluate them as possible therapeutic agents for the treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácidos Cumáricos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico
17.
Gynecol Endocrinol ; 38(3): 243-247, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34494506

RESUMO

AIMS: This study aims to investigate whether HRG gene C633T rs9898 and TP73 gene rs4648551 A > G polymorphisms have an effect on ovulation and response to the gonadotropin treatments. MATERIALS AND METHODS: Blood samples were received from a total of 206 individuals (116 patients from whom good quality and optimal of numbers oocytes have not been able to be obtained at the IVF Center of Ondokuz Mayis University, Faculty of Medicine and 90 controls). Genomic DNA was extracted by DNA isolation and SNP genotyping was performed by real-time qPCR method. RESULTS: According to the results, a significant difference was observed between the patient and control groups in terms of the TP73 gene variant, however there was no significant difference regarding HRG gene polymorphism. CONCLUSIONS: Our findings suggest that while AG genotype for TP73 could be a genetic marker for ovarian response, HRG gene C633T variation is not associated with ovarian response in our cohort. Further studies with larger study groups are required to investigate possible associations of these gene variants with ovarian response.


Assuntos
Ovário , Polimorfismo de Nucleotídeo Único , Proteínas , Proteína Tumoral p73 , Estudos de Coortes , Feminino , Fertilização in vitro , Genótipo , Humanos , Oócitos , Indução da Ovulação , Proteínas/genética , Proteína Tumoral p73/genética
18.
Braz. arch. biol. technol ; 65: e22200784, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1364455

RESUMO

Abstract Nanoscale biomaterials are commonly used in a wide range of biomedical applications such as bone graft substitutes, gene delivery systems, and biologically active agents. On the other hand, the cytotoxic potential of these particles hasn't yet been studied comprehensively to understand whether or not they exert any negative impact on the cellular structures. Here, we undertook the synthesis of beta-tricalcium phosphate (ß-TCP) and biphasic tricalcium phosphate (BCP) nanoparticles (NPs) and determine their concentration-dependent toxic effects in human fetal osteoblastic (hFOB 1.19) cell line. Firstly, BCP and β-TCP were synthesized using a water-based precipitation technique and characterized by X-Ray Diffraction (XRD), Raman Spectroscopy, and Transmission Electron Microscopy (TEM). The cytological effects of β-TCP and BCP at different concentrations (0-640 ppm) were evaluated by using 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The total oxidative status (TOS) parameter was used for investigating oxidative stress potentials of the NPs. In addition, the study assessed the DNA damage product 8-hydroxy-2′-deoxyguanosine (8-Oxo-dG) level in hFOB 1.19 cell cultures. The results indicated that the β-TCP (above 320 ppm) and BCP (above 80 ppm) NPs exhibited cytotoxicity effects on high concentrations. It was also observed that the oxidative stress increased relatively as the concentrations of NPs increased, aligning with the cytotoxicity results. However, the NPs concentrations of 160 ppm and above increased the level of 8-OH-dG. Consequently, there is a need for more systematic in vivo and in vitro approaches to the toxic effects of both nanoparticles.

19.
J Food Biochem ; 45(12): e13990, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34730243

RESUMO

Propolis is the extract of a resinous compound that protects plants from both cold and microorganism attack and has gained a strong and sticky property because it is transformed after being collected by honey bees. Up to date, many studies have shown that propolis exhibited various beneficial biological activities, such as antifungal, antibacterial, antiviral, antioxidant, antimutagenic, and antitumor effects. Recent reports propounded the in vitro and in vivo neuroprotective effect of propolis; however, the exact molecular genetic mechanisms are still unclear. Therefore, we aimed to investigate the toxicogenomic and beneficial properties, including cytotoxic, antioxidant, apoptotic/necrotic as well as genotoxic effects of propolis (1.56-200 µg/ml) on differentiated SH-SY5Y neuronal cells. Additionally, microarray analysis was conducted on cell cultures following propolis application to explore gene differentiation. Differentially expressed genes were further analyzed using string software to characterize protein-protein interactions between gene pathways. Our results revealed that propolis applications could not have a prominent effect on cell viability even at concentrations up to 200 µg/ml. The highest propolis concentration induced apoptotic rather than necrotic cell death. The alterations in gene expression profiles, including CYP26A1, DHRS2, DHRS3, DYNC1I1, IGF2, ITGA4, SVIL, TGFß1, and TGM2 could participate in the neuroprotective effects of propolis. In conclusion, propolis supplementation exerted remarkable advantageous; thus, it may offer great potential as a natural component in the prevention and treatment of neurodegenerative disorders. Whole-genome gene expression pattern following propolis application was investigated for the first time in neuronal cell culture to fill a gap in the literature about propolis toxicogenomics. PRACTICAL APPLICATIONS: Propolis is a very rich product in terms of benefits. In addition to its antibacterial, antiviral, antifungal, and anti-inflammatory content, it is known to have preventive and therapeutic properties for many different ailments. On the other hand, molecular mechanisms of propolis on gene expression differentiations haven't been investigated until now. Moreover, gene expression pattern is vital for all living organisms to maintain homeostasis. Thus, we conduct an experiment series for analyzing gene expression differentiation effects on neuronal cells to understand beneficial properties of propolis. Hence, it could be possible to comment on the use of propolis as a nutritional factor and beneficial diet.


Assuntos
Neurônios , Própole , Transcriptoma , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Própole/farmacologia
20.
Neurochem Int ; 150: 105168, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450218

RESUMO

Glioblastoma (GBM) is considered one of the most common malignant brain tumors, occurring as over 15% of all primary central nervous system and brain neoplasms. The unique and standard treatment option towards GBM involves the combination of surgical resection followed by radiotherapy (RT) and chemotherapy (CT). However, due to the aggressive nature and heterogeneity of GBMs, they remained difficult to treat. Recent findings from preclinical studies have revealed that disruption of the redox balance via using either oxidative or anti-oxidative agents in GBM presented an effective and promising therapeutic approach. A limited number of clinical trials substantially encouraged their concomitant use with RT or CT. Thus, treatment of GBMs may benefit from natural or synthetic antioxidative compounds as novel therapeutics. Despite the presence of variegated in vitro and in vivo studies focusing on safety and efficacy issues of these promising therapeutics, nowadays their translation to clinics is far from applicability due to several challenges. In this review, we briefly introduce the enzymatic and non-enzymatic antioxidant defense systems as well as potential signaling pathways related to the pathogenesis of GBM with a special interest in antioxidant mechanisms. In addition, we describe the advantages and limitations of antioxidant supplementation in GBM cases or disease models as well as growing challenges for GBM therapies with antioxidants in the future.


Assuntos
Antioxidantes/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Ensaios Clínicos como Assunto/métodos , Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Neoplasias Encefálicas/metabolismo , Terapia Combinada/métodos , Glioblastoma/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA