Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4380, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782905

RESUMO

SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17ß-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.


Assuntos
Primatas , Animais , Humanos , Sequência de Aminoácidos , Estradiol/metabolismo , Células HEK293 , Hominidae/genética , Hominidae/metabolismo , Mutação de Sentido Incorreto , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Primatas/genética , Pseudogenes , Especificidade por Substrato
2.
Eur J Nutr ; 60(7): 3727-3741, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33770218

RESUMO

BACKGROUND: Glycoproteomics deals with glycoproteins that are formed by post-translational modification when sugars (like fucose and sialic acid) are attached to protein. Glycosylation of proteins influences function, but whether glycosylation is altered by diet is unknown. OBJECTIVE: To evaluate the effect of consuming a diet based on the Dietary Guidelines for Americans on circulating glycoproteins that have previously been associated with cardiometabolic diseases. DESIGN: Forty-four women, with one or more metabolic syndrome characteristics, completed an 8-week randomized controlled feeding intervention (n = 22) consuming a diet based on the Dietary Guidelines for Americans (DGA 2010); the remaining consumed a 'typical American diet' (TAD, n = 22). Fasting serum samples were obtained at week0 (baseline) and week8 (post-intervention); 17 serum proteins were chosen for targeted analyses. Protein standards and serum samples were analyzed in a UHPLC-MS protocol to determine peptide concentration and their glycan (fucosylation or sialylation) profiles. Data at baseline were used in correlational analyses; change in proteins and glycans following intervention were used in non-parametric analyses. RESULTS: At baseline, women with more metabolic syndrome characteristics had more fucosylation (total di-fucosylated proteins: p = 0.045) compared to women with a lesser number of metabolic syndrome characteristics. Dietary refined grain intake was associated with increased total fucosylation (ρ = - 0.530, p < 0.001) and reduced total sialylation (ρ = 0.311, p = 0.042). After the 8-week intervention, there was higher sialylation following the DGA diet (Total di-sialylated protein p = 0.018, poly-sialylated orosomucoid p = 0.012) compared to the TAD diet. CONCLUSIONS: Based on this study, glycosylation of proteins is likely affected by dietary patterns; higher sialylation was associated with a healthier diet pattern. Altered glycosylation is associated with several diseases, particularly cancer and type 2 diabetes, and this study raises the possibility that diet may influence disease state by altering glycosylation. CLINICAL TRIAL REGISTRATION: NCT02298725 at clinicaltrials.gov; https://clinicaltrials.gov/ct2/show/NCT02298725 .


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Proteínas Sanguíneas/metabolismo , Doenças Cardiovasculares/prevenção & controle , Dieta , Feminino , Glicosilação , Humanos
3.
Nat Commun ; 9(1): 3506, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158636

RESUMO

The transcription factor Nrf2 is a critical regulator of inflammatory responses. If and how Nrf2 also affects cytosolic nucleic acid sensing is currently unknown. Here we identify Nrf2 as an important negative regulator of STING and suggest a link between metabolic reprogramming and antiviral cytosolic DNA sensing in human cells. Here, Nrf2 activation decreases STING expression and responsiveness to STING agonists while increasing susceptibility to infection with DNA viruses. Mechanistically, Nrf2 regulates STING expression by decreasing STING mRNA stability. Repression of STING by Nrf2 occurs in metabolically reprogrammed cells following TLR4/7 engagement, and is inducible by a cell-permeable derivative of the TCA-cycle-derived metabolite itaconate (4-octyl-itaconate, 4-OI). Additionally, engagement of this pathway by 4-OI or the Nrf2 inducer sulforaphane is sufficient to repress STING expression and type I IFN production in cells from patients with STING-dependent interferonopathies. We propose Nrf2 inducers as a future treatment option in STING-dependent inflammatory diseases.


Assuntos
Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Vírus de DNA/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Proteínas de Membrana/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , Células RAW 264.7 , RNA Mensageiro/metabolismo , Succinatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA