Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768191

RESUMO

Neoadjuvant chemotherapy (NACT) for breast cancer (BC) often results in pathologic complete response (pCR), i.e., the complete elimination of visible cancer cells. It is unclear whether the use of ultrasensitive genetic methods may still detect residual BC cells in complete responders. Breast carcinomas arising in BRCA1 mutation carriers almost always carry alterations of the TP53 gene thus providing an opportunity to address this question. The analysis of consecutive BC patients treated by NACT revealed a higher pCR rate in BRCA1-driven vs. BRCA1-wildtype BCs (13/24 (54%) vs. 29/192 (15%), p < 0.0001). Twelve pre-/post-NACT tissue pairs obtained from BRCA1 mutation carriers were available for the study. While TP53 mutation was identified in all chemonaive tumors, droplet digital PCR (ddPCR) analysis of the post-NACT tumor bed revealed the persistence of this alteration in all seven pCR-non-responders but in none of five pCR responders. Eleven patients provided to the study post-NACT tissue samples only; next-generation sequencing (NGS) analysis revealed mutated TP53 copies in all six cases without pCR but in none of five instances of pCR. In total, TP53 mutation was present in post-NACT tissues in all 13 cases without pCR, but in none of 10 patients with pCR (p < 0.000001). Therefore, the lack of visible tumor cells in the post-NACT tumor bed is indeed a reliable indicator of the complete elimination of transformed clones. Failure of ultrasensitive methods to identify patients with minimal residual disease among pCR responders suggests that the result of NACT is a categorical rather than continuous variable, where some patients are destined to be cured while others ultimately fail to experience tumor eradication.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Terapia Neoadjuvante/métodos , Mutação , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/genética
2.
Int J Clin Oncol ; 27(5): 850-862, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35171360

RESUMO

PURPOSE: This study aimed to analyze changes in the plasma concentration of EGFR-mutated circulating tumor DNA (ctDNA) occurring immediately after the start of therapy with EGFR tyrosine kinase inhibitors (TKIs). METHODS: Serial plasma samples were collected from 30 patients with EGFR-driven non-small cell lung cancer before intake of the first tablet and at 0.5, 1, 2, 3, 6, 12, 24, 36 and 48 h after the start of the therapy. The content of EGFR alleles (exon 19 deletions or L858R) in ctDNA was measured by ddPCR. RESULTS: ctDNA was detected at base-line in 25/30 (83%) subjects. Twelve (50%) out of 24 informative patients showed > 25% reduction of the ctDNA content at 48 h time point; all these patients demonstrated disease control after 4 and 8-12 weeks of therapy. The remaining 12 individuals showed either stable content of EGFR-mutated ctDNA (n = 5) or the elevation of ctDNA concentration (n = 7). 10 of 12 patients with elevated or stable ctDNA level achieved an objective response at 4 weeks, but only 5 of 10 evaluable patients still demonstrated disease control at 8-12 weeks (p = 0.032, when compared to the group with ctDNA decrease). The decline of the amount of circulating EGFR mutant copies at 48 h also correlated with longer progression-free survival (14.7 months vs. 8.5 months, p = 0.013). CONCLUSION: Comparison of concentration of EGFR-mutated ctDNA at base-line and at 48 h after the start of therapy is predictive for the duration of TKI efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
3.
Case Rep Oncol ; 12(2): 339-343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182949

RESUMO

Vemurafenib has been developed to target common BRAF mutation V600E. It also exerts activity towards some but not all rare BRAF substitutions. Proper cataloguing of drug-sensitive and -insensitive rare mutations remains a challenge, due to low occurrence of these events and inability of commercial PCR-based diagnostic kits to detect the full spectrum of BRAF gene lesions. We considered the results of BRAF exon 15 testing in 1872 consecutive melanoma patients. BRAF mutation was identified in 1,090 (58.2%) cases. While drug-sensitive codon 600 substitutions constituted the majority of BRAF gene lesions (V600E: 962 [51.4%]; V600K: 86 [4.6%]; V600R: 17 [0.9%]), the fourth common BRAF allele was K601E accounting for 9 (0.5%) melanoma cases. The data on BRAF inhibitor sensitivity of tumors with K601E substitution are scarce. We administered single-agent vemurafenib to a melanoma patient carrying BRAF K601E mutation as the first-line treatment. Unfortunately, this therapy did not result in a tumor response. Taken together with already published data, this report indicates lack of benefit from conventional BRAF inhibitors in patients with BRAF K601E mutated melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA