Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35276983

RESUMO

The gut microbiota is a complex community of microorganisms that has become a new focus of attention due to its association with numerous human diseases. Research over the last few decades has shown that the gut microbiota plays a considerable role in regulating intestinal homeostasis, and disruption to the microbial community has been linked to chronic disease conditions such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and obesity. Obesity has become a global pandemic, and its prevalence is increasing worldwide mostly in Western countries due to a sedentary lifestyle and consumption of high-fat/high-sugar diets. Obesity-mediated gut microbiota alterations have been associated with the development of IBD and IBD-induced CRC. This review highlights how obesity-associated dysbiosis can lead to the pathogenesis of IBD and CRC with a special focus on mechanisms of altered absorption of short-chain fatty acids (SCFAs).


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Doença Crônica , Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Humanos , Doenças Inflamatórias Intestinais/complicações , Obesidade/complicações
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201429

RESUMO

Obesity increases the risk of postmenopausal breast cancer (BC). This risk is mediated by obesity-induced changes in the adipose-derived secretome (ADS). The pathogenesis of BC in obesity is stimulated by mTOR hyperactivity. In obesity, leucine might support mTOR hyperactivity. Leucine uptake by BC cells is through L-Type Amino Acid Transporter 1 (LAT1). Our objective was to link obesity-ADS induction of LAT1 to the induction of mTOR signaling. Lean- and obese-ADS were obtained from lean and obese mice, respectively. Breast ADS was obtained from BC patients. Estrogen-receptor-positive BC cells were stimulated with ADS. LAT1 activity was determined by uptake of 3H-leucine. The LAT1/CD98 complex, and mTOR signaling were assayed by Western blot. The LAT1 antagonists, BCH and JPH203, were used to inhibit LAT1. Cell migration and invasion were measured by Transwell assays. The results showed obese-ADS-induced LAT1 activity by increasing transporter affinity for leucine. Consistent with this mechanism, LAT1 and CD98 expression were unchanged. Induction of mTOR by obese-ADS was inhibited by LAT1 antagonists. Breast ADS from patients with BMIs > 30 stimulated BC cell migration and invasiveness. Collectively, our findings show that obese-ADS induction of LAT1 supports mTOR hyperactivity in luminal BC cells.


Assuntos
Tecido Adiposo/metabolismo , Neoplasias da Mama/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Leucina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais
3.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299188

RESUMO

Na-K-ATPase provides a favorable transcellular Na gradient required for the functioning of Na-dependent nutrient transporters in intestinal epithelial cells. The primary metabolite for enterocytes is glutamine, which is absorbed via Na-glutamine co-transporter (SN2; SLC38A5) in intestinal crypt cells. SN2 activity is stimulated during chronic intestinal inflammation, at least in part, secondarily to the stimulation of Na-K-ATPase activity. Leukotriene D4 (LTD4) is known to be elevated in the mucosa during chronic enteritis, but the way in which it may regulate Na-K-ATPase is not known. In an in vitro model of rat intestinal epithelial cells (IEC-18), Na-K-ATPase activity was significantly stimulated by LTD4. As LTD4 mediates its action via Ca-dependent protein kinase C (PKC), Ca levels were measured and were found to be increased. Phorbol 12-myristate 13-acetate (PMA), an activator of PKC, also mediated stimulation of Na-K-ATPase like LTD4, while BAPTA-AM (Ca chelator) and calphostin-C (Cal-C; PKC inhibitor) prevented the stimulation of Na-K-ATPase activity. LTD4 caused a significant increase in mRNA and plasma membrane protein expression of Na-K-ATPase α1 and ß1 subunits, which was prevented by calphostin-C. These data demonstrate that LTD4 stimulates Na-K-ATPase in intestinal crypt cells secondarily to the transcriptional increase of Na-K-ATPase α1 and ß1 subunits, mediated via the Ca-activated PKC pathway.


Assuntos
Cálcio/metabolismo , Enterite/enzimologia , Células Epiteliais/enzimologia , Intestinos/enzimologia , Leucotrieno D4/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Enterite/tratamento farmacológico , Enterite/patologia , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos
4.
Cells ; 10(3)2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801010

RESUMO

In Inflammatory Bowel Disease (IBD), malabsorption of electrolytes (NaCl) results in diarrhea. Inhibition of coupled NaCl absorption, mediated by the dual operation of Na:H and Cl:HCO3 exchangers on the brush border membrane (BBM) of the intestinal villus cells has been reported in IBD. In the SAMP1/YitFcs (SAMP1) mice model of spontaneous ileitis, representing Crohn's disease, DRA (Downregulated in Adenoma) mediated Cl:HCO3 exchange was shown to be inhibited secondary to diminished affinity of the exchanger for Cl. However, NHE3 mediated Na:H exchange remained unaffected. Mast cells and their secreted mediators are known to be increased in the IBD mucosa and can affect intestinal electrolyte absorption. However, how mast cell mediators may regulate Cl:HCO3 exchange in SAMP1 mice is unknown. Therefore, the aim of this study was to determine the effect of mast cell mediators on the downregulation of DRA in SAMP1 mice. Mast cell numbers and their degranulation marker enzyme (ß-hexosaminidase) levels were significantly increased in SAMP1 mice compared to control AKR mice. However, treatment of SAMP1 mice with a mast cell stabilizer, ketotifen, restored the ß-hexosaminidase enzyme levels to normal in the intestine, demonstrating stabilization of mast cells by ketotifen. Moreover, downregulation of Cl:HCO3 exchange activity was restored in ketotifen treated SAMP1 mice. Kinetic studies showed that ketotifen restored the altered affinity of Cl:HCO3 exchange in SAMP1 mice villus cells thus reinstating its activity to normal. Further, RT-qPCR, Western blot and immunofluorescence studies showed that the expression levels of DRA mRNA and BBM protein, respectively remained unaltered in all experimental conditions, supporting the kinetic data. Thus, inhibition of Cl:HCO3 exchange resulting in chloride malabsorption leading to diarrhea in IBD is likely mediated by mast cell mediators.


Assuntos
Cloretos/metabolismo , Ileíte/metabolismo , Absorção Intestinal , Intestino Delgado/metabolismo , Mastócitos/metabolismo , Animais , Antiporters/genética , Antiporters/metabolismo , Bicarbonatos/metabolismo , Degranulação Celular/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/patologia , Inflamação/patologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Cetotifeno/farmacologia , Cinética , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Camundongos , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
5.
Cells ; 10(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805551

RESUMO

The primary means of intestinal absorption of nutrients by villus cells is via Na-dependent nutrient co-transporters located in the brush border membrane (BBM). These secondary active co-transport processes require a favorable transcellular Na gradient that is provided by Na-K-ATPase. In chronic enteritis, malabsorption of essential nutrients is partially due to inhibition of villus Na-K-ATPase activity mediated by specific immune inflammatory mediators that are known to be elevated in the inflamed mucosa. However, how Prostaglandin E2 (PGE2), a specific mediator of nutrient malabsorption in the villus BBM, may mediate the inhibition of Na-K-ATPase is not known. Therefore, this study aimed to determine the effect of PGE2 on Na-K-ATPase in villus cells and define its mechanism of action. In vitro, in IEC-18 cells, PGE2 treatment significantly reduced Na-K-ATPase activity, accompanied by a significant increase in the intracellular levels of cyclic Adenosine Monophosphate (cAMP). The treatment with cAMP analog 8-Bromo-cAMP mimicked the PGE2-mediated effect on Na-K-ATPase activity, while Rp-cAMP (PKA inhibitor) pretreatment reversed the same. The mechanism of inhibition of PGE2 was secondary to a transcriptional reduction in the Na-K-ATPase α1 and ß1 subunit genes, which was reversed by the Rp-cAMP pretreatment. Thus, the PGE2-mediated activation of the PKA pathway mediates the transcriptional inhibition of Na-K-ATPase activity in vitro.


Assuntos
Dinoprostona/farmacologia , Células Epiteliais/enzimologia , Intestinos/citologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Espaço Intracelular/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Xantonas/farmacologia
6.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920650

RESUMO

Electrolytes (NaCl) and fluid malabsorption cause diarrhea in inflammatory bowel disease (IBD). Coupled NaCl absorption, mediated by Na+/H+ and Cl-/HCO3- exchanges on the intestinal villus cells brush border membrane (BBM), is inhibited in IBD. Arachidonic acid metabolites (AAMs) formed via cyclooxygenase (COX) or lipoxygenase (LOX) pathways are elevated in IBD. However, their effects on NaCl absorption are not known. We treated SAMP1/YitFc (SAMP1) mice, a model of spontaneous ileitis resembling human IBD, with Arachidonyl Trifluoro Methylketone (ATMK, AAM inhibitor), or with piroxicam or MK-886, to inhibit COX or LOX pathways, respectively. Cl-/HCO3- exchange, measured as DIDS-sensitive 36Cl uptake, was significantly inhibited in villus cells and BBM vesicles of SAMP1 mice compared to AKR/J controls, an effect reversed by ATMK. Piroxicam, but not MK-886, also reversed the inhibition. Kinetic studies showed that inhibition was secondary to altered Km with no effects on Vmax. Whole cell or BBM protein levels of Down-Regulated in Adenoma (SLC26A3) and putative anion transporter-1 (SLC26A6), the two key BBM Cl-/HCO3- exchangers, were unaltered. Thus, inhibition of villus cell Cl-/HCO3- exchange by COX pathway AAMs, such as prostaglandins, via reducing the affinity of the exchanger for Cl-, and thereby causing NaCl malabsorption, could significantly contribute to IBD-associated diarrhea.


Assuntos
Ácidos Araquidônicos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Enterócitos/metabolismo , Ileíte/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase/farmacologia , Enterócitos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ileíte/genética , Indóis/farmacologia , Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Piroxicam/farmacologia
7.
Nutrients ; 12(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065982

RESUMO

In mammalian small intestine, glucose is primarily absorbed via Na-dependent glucose co-transporter (SGLT1) on the brush border membrane (BBM) of absorptive villus cells. Malabsorption of nutrients (e.g., glucose) leads to malnutrition, a common symptom of inflammatory bowel disease (IBD), where the mucosa is characterized by chronic inflammation. Inducible nitric oxide (iNO) is known to be elevated in IBD mucosa. SAMP1/YitFc (SAMP1) mouse is a spontaneous model of chronic ileitis that develops lesions in its terminal ileum, very similar to human IBD. How SGLT1 may be affected in SAMP1 model of chronic ileitis is unknown. Ten-week-old SAMP1 mice with AKR mice as control were treated with N6-(1-iminoethyl)-L-lysine dihydrochloride (L-NIL) to inhibit iNO production. Intracellular NO levels were found to be increased in villus cells from SAMP1 mice. Moreover, SGLT1 and Na+/K+-ATPase activities and BBM SGLT1 expression were significantly decreased. However, L-NIL treatment reduced the intracellular iNO production, and reversed both downregulated SGLT1 and Na+/K+-ATPase activities in SAMP1 mice. Inhibition of iNO by L-NIL treatment also significantly reversed the BBM SGLT1 protein expression in SAMP1 mice. L-NIL reversed the inflammation mediated downregulation of SGLT1 activity by restoring the BBM SGLT1 expression. Thus, regulation of SGLT1 in chronic ileitis is likely mediated by iNO.


Assuntos
Transporte Biológico/efeitos dos fármacos , Doença de Crohn/metabolismo , Glucose/metabolismo , Íleo/metabolismo , Óxido Nítrico/fisiologia , Sódio/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Expressão Gênica , Proteínas de Membrana , Camundongos Transgênicos , Microvilosidades/metabolismo , Óxido Nítrico/metabolismo , Proteínas Nucleares , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
J Nutr ; 150(4): 747-755, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769840

RESUMO

BACKGROUND: Chronic alcohol use often leads to malnutrition. However, how the intestinal absorption of nutrients such as glucose may be affected during moderate ethanol use has not been investigated. Glucose is absorbed via sodium (Na)-dependent glucose co-transport (SGLT1; SLC5A1) along the brush border membrane (BBM) of intestinal absorptive villus cells. OBJECTIVE: The aim of this study was to investigate how moderate alcohol consumption affects the absorption of glucose via SGLT1. METHODS: Intestinal epithelial cells (IEC-18; rat) were exposed to 8.64 mM ethanol over 1, 3, 6, and 12 h. Rats (16-wk-old, male, Sprague-Dawley) were administered 2 g/kg ethanol over 1, 3, and 6 h. Na-dependent 3H-O-methyl-d-glucose uptake was measured to assess SGLT1 activity. Na-K-ATPase activity was measured as a function of inorganic phosphate release. Protein expression was analyzed by Western blot analysis and immunohistochemical staining. RESULTS: Ethanol significantly decreased Na-dependent glucose absorption in enterocytes in vitro (ethanol treatment: 48.4% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 60.0% of controls at 1 h; P < 0.01). Na-K-ATPase activity was significantly inhibited in vitro (ethanol treatment: 36.9% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 42.1% of controls at 1 h; P < 0.01). Kinetic studies showed that the mechanism of inhibition of Na-glucose co-transport was secondary to a decrease in the affinity (1/Km) of the co-transporter for glucose both in vitro and in vivo. Western blots and immunohistochemistry further demonstrated unaltered amounts of SGLT1 after ethanol treatment. CONCLUSIONS: Moderate ethanol significantly decreases glucose absorption in IEC-18 cells and in villus cells of Sprague-Dawley rats. The inhibition of SGLT1 is secondary to an altered Na gradient at the cellular level and secondary to diminished affinity of the co-transporter for glucose at the protein level in the BBM. These observations may, at least in part, explain 1 possible mechanism of the onset of malnutrition associated with alcohol consumption.


Assuntos
Células Epiteliais/metabolismo , Etanol/administração & dosagem , Glucose/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/citologia , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Animais , Linhagem Celular , Células Epiteliais/química , Células Epiteliais/efeitos dos fármacos , Intestino Delgado/ultraestrutura , Masculino , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Ratos , Ratos Sprague-Dawley , Sódio/farmacologia , Transportador 1 de Glucose-Sódio/análise , Transportador 1 de Glucose-Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Nutrients ; 11(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635319

RESUMO

Malnutrition is present in chronic alcoholics. However, how moderate alcohol consumption affects the absorption of nutrients like glutamine has not been investigated. Glutamine, an amino acid, is vital to gastrointestinal health. Glutamine is absorbed via sodium-dependent glutamine co-transport (B0AT1; SLC6A19) along the brush border membrane of absorptive villus cells. Rat intestinal epithelial cells (IEC-18) and sixteen-week-old Sprague Dawley rats were administered the equivalent of a 0.04% blood alcohol content of ethanol (8.64 mM; 2 g/kg) to investigate the effect of moderate alcohol on sodium-glutamine co-transport. Sodium-dependent 3H-glutamine uptakes were performed to measure B0AT1 activity. Inorganic phosphate was measured as a function of Na-K-ATPase activity. Protein expression was analyzed by immunohistochemical and Western blot analysis. Ethanol significantly inhibited sodium-dependent glutamine absorption and Na-K-ATPase activity in enterocytes in vitro and ex vivo. Kinetic studies suggested that the mechanism of inhibition was due to decreased maximal rate of uptake (Vmax) of the B0AT1 co-transporter, corresponding to decreased B0AT1 protein expression and secondary to an inhibited sodium-gradient at the cellular level in vitro and ex vivo. In all, moderate ethanol significantly inhibited glutamine absorption at the level of decreased B0AT1 expression at the brush border membrane and a reduced sodium gradient, which may contribute to malnutrition present in chronic alcoholics.


Assuntos
Consumo de Bebidas Alcoólicas , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Células Epiteliais/efeitos dos fármacos , Etanol/farmacologia , Mucosa Intestinal/citologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Linhagem Celular , Etanol/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
10.
Cells ; 8(6)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208048

RESUMO

Na-K-ATPase on the basolateral membrane provides the favorable transcellular Na gradient for the proper functioning of Na-dependent nutrient co-transporters on the brush border membrane (BBM) of enterocytes. As cells mature from crypts to villus, Na-K-ATPase activity doubles, to accommodate for the increased BBM Na-dependent nutrient absorption. However, the mechanism of increased Na-K-ATPase activity during the maturation of enterocytes is not known. Therefore, this study aimed to determine the mechanisms involved in the functional transition of Na-K-ATPase during the maturation of crypts to villus cells. Na-K-ATPase activity gradually increased as IEC-18 cells matured in vitro from day 0 (crypts) through day 4 (villus) of post-confluence. mRNA abundance and Western blot studies showed no change in the levels of Na-K-ATPase subunits α1 and ß1 from 0 to 4 days post-confluent cells. However, Na-K-ATPase α1 phosphorylation levels on serine and tyrosine, but not threonine, residues gradually increased. These data indicate that as enterocytes mature from crypt-like to villus-like in culture, the functional activity of Na-K-ATPase increases secondary to altered affinity of the α1 subunit to extracellular K+, in order to accommodate the functional preference of the intestinal cell type. This altered affinity is likely due to increased phosphorylation of the α1 subunit, specifically at serine and tyrosine residues.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Intestinos/citologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Glucose/metabolismo , Cinética , Fosforilação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
11.
Physiol Rep ; 7(9): e14086, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31074207

RESUMO

In the mammalian small intestine, sodium is primarily absorbed by Na+ /H+ exchange (NHE3) and Na-glucose cotransport (SGLT1) in the brush border membrane (BBM) of villus cells. However, how enhanced cellular constitutive nitric oxide (cNO) may affect NHE3 and SGLT1 remains unclear. Both in vivo in rabbit intestinal villus cells and in vitro IEC-18 cells, administration of NO donor, GSNAP, modestly increased cNO. GSNAP stimulated SGLT1 in villus and IEC-18 cells. The mechanism of stimulation was secondary to an increase in the affinity of SGLT1 for glucose. The change in SGLT1 was not secondary to altered Na-extruding capacity of the cell since Na+ /K+ -ATPase was decreased by GSNAP treatment. In contrast, GSNAP inhibited NHE3 activity in villus cell BBM. The mechanism of NHE3 inhibition was secondary to reduced BBM transporter numbers. These studies demonstrated that the physiological increase in cNO uniquely regulates mammalian small intestinal NHE3 and SGLT1 to maintain Na homeostasis.


Assuntos
Absorção Intestinal/fisiologia , Intestino Delgado/metabolismo , Óxido Nítrico/fisiologia , Sódio/metabolismo , Animais , Células Cultivadas , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Compostos Nitrosos/farmacologia , Penicilamina/análogos & derivados , Penicilamina/farmacologia , Coelhos , Ratos , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
FASEB J ; 33(8): 9323-9333, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31107610

RESUMO

During obesity, diabetes and hypertension inevitably coexist and cause innumerable health disparities. In the obesity, diabetes, and hypertension triad (ODHT), deregulation of glucose and NaCl homeostasis, respectively, causes diabetes and hypertension. In the mammalian intestine, glucose is primarily absorbed by Na-glucose cotransport 1 (SGLT1) and coupled NaCl by the dual operation of Na-H exchange 3 (NHE3) and Cl-HCO3 [down-regulated in adenoma (DRA) or putative anion transporter 1 (PAT1)] exchange in the brush border membrane (BBM) of villus cells. The basolateral membrane (BLM) Na/K-ATPase provides the favorable transcellular Na gradient for BBM SGLT1 and NHE3. How these multiple, distinct transport processes may be affected in ODHT is unclear. Here, we show the novel and broad regulation by Na/K-ATPase of glucose and NaCl absorption in ODHT in multiple species (mice, rats, and humans). In vivo, during obesity inhibition of villus-cell BLM, Na/K-ATPase led to compensatory stimulation of BBM SGLT1 and DRA or PAT1, whereas NHE3 was unaffected. Supporting this new cellular adaptive mechanism, direct silencing of BLM Na/K-ATPase in intestinal epithelial cells resulted in selective stimulation of BBM SGLT1 and DRA or PAT1 but not NHE3. These changes will lead to an increase in glucose absorption, maintenance of traditional coupled NaCl absorption, and a de novo increase in NaCl absorption from the novel coupling of stimulated SGLT1 with DRA or PAT1. Thus, these novel observations provide the pathophysiologic basis for the deregulation of glucose and NaCl homeostasis of diabetes and hypertension, respectively, during obesity. These observations may lead to more efficacious treatment for obesity-associated diabetes and hypertension.-Palaniappan, B., Arthur, S., Sundaram, V. L., Butts, M., Sundaram, S., Mani, K., Singh, S., Nepal, N., Sundaram, U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension.


Assuntos
Glucose/metabolismo , Intestinos/citologia , Microvilosidades/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Cloreto de Sódio/metabolismo , Animais , Western Blotting , Linhagem Celular , Imunofluorescência , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Interferência de RNA , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismo
13.
Int J Mol Sci ; 19(8)2018 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103560

RESUMO

The progression of cancer is associated with increases in amino acid uptake by cancer cells. Upon their entry into cells through specific transporters, exogenous amino acids are used to synthesize proteins, nucleic acids and lipids and to generate ATP. The essential amino acid leucine is also important for maintaining cancer-associated signaling pathways. By upregulating amino acid transporters, cancer cells gain greater access to exogenous amino acids to support chronic proliferation, maintain metabolic pathways, and to enhance certain signal transduction pathways. Suppressing cancer growth by targeting amino acid transporters will require an in-depth understanding of how cancer cells acquire amino acids, in particular, the transporters involved and which cancer pathways are most sensitive to amino acid deprivation. L-Type Amino Acid Transporter 1 (LAT1) mediates the uptake of essential amino acids and its expression is upregulated during the progression of several cancers. We will review the upstream regulators of LAT1 and the downstream effects caused by the overexpression of LAT1 in cancer cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias/metabolismo , Transdução de Sinais , Aminoácidos/metabolismo , Animais , Transporte Biológico Ativo , Humanos , Neoplasias/patologia
14.
Biochem Pharmacol ; 106: 94-103, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944194

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is regulated by environmental toxicants that function as AHR agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). L-Type Amino Acid Transporter 1 (LAT1) is a leucine transporter that is overexpressed in cancer. The regulation of LAT1 by AHR in MCF-7 and MDA-MB-231 breast cancer cells (BCCs) was investigated in this report. Ingenuity pathway analysis (IPA) revealed a significant association between TCDD-regulated genes (TRGs) and molecular transport. Overlapping the TCDD-RNA-Seq dataset obtained in this study with a published TCDD-ChIP-seq dataset identified LAT1 as a primary target of AHR-dependent TCDD induction. Short interfering RNA (siRNA)-directed knockdown of AHR confirmed that TCDD-stimulated increases in LAT1 mRNA and protein required AHR expression. TCDD-stimulated increases in LAT1 mRNA were also inhibited by the AHR antagonist CH-223191. Upregulation of LAT1 by TCDD coincided with increases in leucine uptake by MCF-7 cells in response to TCDD. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays revealed increases in AHR, AHR nuclear translocator (ARNT) and p300 binding and histone H3 acetylation at an AHR binding site in the LAT1 gene in response to TCDD. In MCF-7 and MDA-MB-231 cells, endogenous levels of LAT1 mRNA and protein were reduced in response to knockdown of AHR expression. Knockdown experiments demonstrated that proliferation of MCF-7 and MDA-MB-231 cells is dependent on both LAT1 and AHR. Collectively, these findings confirm the dependence of cancer cells on leucine uptake and establish a mechanism for extrinsic and intrinsic regulation of LAT1 by AHR.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes/genética , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Acetilação/efeitos dos fármacos , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina/metabolismo , Células MCF-7 , Ligação Proteica , Pirazóis/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais
15.
BMC Gastroenterol ; 15: 47, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884559

RESUMO

BACKGROUND: In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis. METHODS: Chronic intestinal inflammation was induced in male rabbits with intra-gastric inoculation of Eimeria magna oocytes. Rabbits with chronic inflammation were treated with ketotifen (10 mg/day) or saline (Placebo) for 2 days. Villus and crypts cells were isolated from the rabbit intestine using the Ca++ chelation technique. Na/K-ATPase activity was measured as Pi from cellular homogenate. BBM vesicles (BBMV) were prepared from villus and crypt cells and uptake studies were performed using rapid filtration technique with (3)H-Glutamine. Western blot analyses were done using B0AT1 and SN2 specific antibodies. RESULTS: In villus cells, Na-glutamine co-transport inhibition observed during inflammation was completely reversed by ketotifen, a mast cell stabilizer. In contrast, in crypt cells, Na-glutamine co-transport stimulation was reversed to normal levels by ketotifen. Kinetic studies demonstrated that ketotifen reversed the inhibition of B0AT1 in villus cells by restoring co-transporter numbers in the BBM, whereas the stimulation of SN2/SNAT5 in crypts cells was reversed secondary to restoration of affinity of the co-transporter. Western blot analysis showed that ketotifen restored immune-reactive levels of B0AT1 in villus cells, while SN2/SNAT5 levels from crypts cell remained unchanged. CONCLUSION: In the present study we demonstrate that mast cells likely function as a common upstream immune pathway regulator of the Na-dependent glutamine co-transporters, B0AT1 in villus cells and SN2 in crypts cells that are uniquely altered in the chronically inflamed small intestine.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Degranulação Celular/efeitos dos fármacos , Enterite/metabolismo , Glutamina/metabolismo , Mucosa Intestinal/metabolismo , Mastócitos/fisiologia , Microvilosidades/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Doença Crônica , Enterócitos/metabolismo , Antagonistas dos Receptores Histamínicos H1/farmacologia , Íleo , Mucosa Intestinal/citologia , Cetotifeno/farmacologia , Cinética , Masculino , Mastócitos/enzimologia , Microvilosidades/enzimologia , Coelhos , ATPase Trocadora de Sódio-Potássio/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
16.
Am J Physiol Cell Physiol ; 308(8): C650-6, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652450

RESUMO

Na-K-ATPase, an integral membrane protein in mammalian cells, is responsible for maintaining the favorable intracellular Na gradient necessary to promote Na-coupled solute cotransport processes [e.g., Na-glucose cotransport (SGLT1)]. Inhibition of brush border membrane (BBM) SGLT1 is, at least in part, due to the diminished Na-K-ATPase in villus cells from chronically inflamed rabbit intestine. The aim of the present study was to determine the effect of Na-K-ATPase inhibition on the two major BBM Na absorptive pathways, specifically Na-glucose cotransport and Na/H exchange (NHE), in intestinal epithelial (IEC-18) cells. Na-K-ATPase was inhibited using 1 mM ouabain or siRNA for Na-K-ATPase-α1 in IEC-18 cells. SGLT1 activity was determined as 3-O-methyl-D-[(3)H]glucose uptake. Na-K-ATPase activity was measured as the amount of inorganic phosphate released. Treatment with ouabain resulted in SGLT1 inhibition at 1 h but stimulation at 24 h. To further characterize this unexpected stimulation of SGLT1, siRNA silencing was utilized to inhibit Na-K-ATPase-α1. SGLT1 activity was significantly upregulated by Na-K-ATPase silencing, while NHE3 activity remained unaltered. Kinetics showed that the mechanism of stimulation of SGLT1 activity was secondary to an increase in affinity of the cotransporter for glucose without a change in the number of cotransporters. Molecular studies demonstrated that the mechanism of stimulation was not secondary to altered BBM SGLT1 protein levels. Chronic and direct silencing of basolateral Na-K-ATPase uniquely regulates BBM Na absorptive pathways in intestinal epithelial cells. Specifically, while BBM NHE3 is unaffected, SGLT1 is stimulated secondary to enhanced affinity of the cotransporter.


Assuntos
Absorção Intestinal/fisiologia , Microvilosidades/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Transporte Biológico/fisiologia , Linhagem Celular , Coccidiose/parasitologia , Coccidiose/patologia , Eimeria/imunologia , Eimeria/patogenicidade , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/enzimologia , Intestino Delgado/citologia , Masculino , Ouabaína/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Coelhos , Ratos , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/genética , Trocador 3 de Sódio-Hidrogênio , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética
17.
Biochim Biophys Acta ; 1848(2): 702-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462166

RESUMO

Na-K-ATPase located on the basolateral membrane (BLM) of intestinal epithelial cells provides a favorable intracellular Na+ gradient to promote all Na dependent co-transport processes across the brush border membrane (BBM). Down-regulation of Na-K-ATPase activity has been postulated to alter the absorption via Na-solute co-transporters in human inflammatory bowel disease (IBD). Further, the altered activity of a variety of Na-solute co-transporters in intact villus cells has been reported in animal models of chronic enteritis. But the molecular mechanism of down-regulation of Na-K-ATPase is not known. In the present study, using a rabbit model of chronic intestinal inflammation, which resembles human IBD, Na-K-ATPase in villus cells was shown to decrease. The relative mRNA abundance of α-1 and ß-1 subunits was not altered in villus cells during chronic intestinal inflammation. Similarly, the protein levels of these subunits were also not altered in villus cells during chronic enteritis. However, the BLM concentration of α-1 and ß-1 subunits was diminished in the chronically inflamed intestinal villus cells. An ankyrin-spectrin skeleton is necessary for the proper trafficking of Na-K-ATPase to the BLM of the cell. In the present study, ankyrin expression was markedly diminished in villus cells from the chronically inflamed intestine resulting in depolarization of ankyrin-G protein. The decrease of Na-K-ATPase activity was comparable to that seen in ankyrin knockdown IEC-18 cells. Therefore, altered localization of Na-K-ATPase as a result of transcriptional down-regulation of ankyrin-G mediates the down-regulation of Na-K-ATPase activity during chronic intestinal inflammation.


Assuntos
Anquirinas/genética , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/genética , Microvilosidades/metabolismo , Subunidades Proteicas/genética , ATPase Trocadora de Sódio-Potássio/genética , Actinas/genética , Actinas/metabolismo , Animais , Anquirinas/metabolismo , Membrana Celular/química , Polaridade Celular , Doença Crônica , Modelos Animais de Doenças , Células Epiteliais/química , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Intestino Delgado/química , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Microvilosidades/química , Microvilosidades/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Coelhos , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
Am J Physiol Cell Physiol ; 307(11): C1010-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25231108

RESUMO

Leukotriene D4 (LTD4) is an important immune inflammatory mediator that is known to be elevated in the mucosa of chronically inflamed intestine and alter nutrient absorption. LTD4 inhibits Na-alanine cotransport in intestinal epithelial cells by decreasing the affinity of the cotransporter ASCT1. LTD4 is known to increase intracellular Ca(++) and cAMP concentrations. However, the intracellular signaling mechanism of LTD4-mediated ASCT1 inhibition is unknown. In the present study, pretreatment with calcium chelator BAPTA-AM or inhibition of Ca(++)-dependent protein kinase C (PKC), specifically PKCα, resulted in the reversal of LTD4-mediated inhibition of ASCT1, revealing the involvement of the Ca(++)-activated PKC pathway. PKCα is known to phosphorylate Raf kinase inhibitor protein (RKIP), thus activating its downstream signaling pathway. Immunoblotting with anti-RKIP-Ser(153) antibody showed an increase in phosphorylation levels of RKIP in LTD4-treated cells. Downregulation of endogenous RKIP showed no decrease in ASCT1 activity by LTD4, thus confirming its involvement in ASCT1 regulation. Phosphorylation of RKIP by PKC is known to activate different signaling pathways, and in this study it was found to activate cAMP-activated protein kinase A (PKA) pathway. Although protein abundance of ASCT1 was not altered in any of the experimental conditions, there was an increase in the levels of phosphothreonine in ASCT1 protein, thus showing that phosphorylation changes were responsible for the altered affinity of ASCT1 by LTD4. In conclusion, LTD4 inhibits ASCT1 through PKC-mediated phosphorylation of RKIP, leading to the subsequent activation of PKA pathway, possibly through ß2-andrenergic receptor activation.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Leucotrieno D4/farmacologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína Quinase C/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Células Epiteliais/efeitos dos fármacos , Microvilosidades , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína Quinase C/genética , Ratos
19.
Biochim Biophys Acta ; 1838(5): 1208-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24412219

RESUMO

Inhibition of constitutive nitric oxide (cNO) production inhibits SGLT1 activity by a reduction in the affinity for glucose without a change in Vmax in intestinal epithelial cells (IEC-18). Thus, we studied the intracellular pathway responsible for the posttranslational modification/s of SGLT1. NO is known to mediate its effects via cGMP which is diminished tenfold in L-NAME treated cells. Inhibition of cGMP production at the level of guanylyl cyclase or inhibition of protein kinase G also showed reduced SGLT1 activity demonstrating the involvement of PKG pathway in the regulation of SGLT1 activity. Metabolic labeling and immunoprecipitation with anti-SGLT1 specific antibodies did not show any significant changes in phosphorylation of SGLT1 protein. Tunicamycin to inhibit glycosylation reduced SGLT1 activity comparable to that seen with L-NAME treatment. The mechanism of inhibition was secondary to decreased affinity without a change in Vmax. Immunoblots of luminal membranes from tunicamycin treated or L-NAME treated IEC-18 cells showed a decrease in the apparent molecular size of SGLT1 protein to 62 and 67 kD, respectively suggesting an alteration in protein glycosylation. The deglycosylation assay with PNGase-F treatment reduced the apparent molecular size of the specific immunoreactive band of SGLT1 from control and L-NAME treated IEC-18 cells to approximately 62 kD from their original molecular size of 75 kD and 67 kD, respectively. Thus, the posttranslational mechanism responsible for the altered affinity of SGLT1 when cNO is diminished is secondary to altered glycosylation of SGLT1 protein. The intracellular pathway responsible for this alteration is cGMP and its dependent kinase.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Processamento de Proteína Pós-Traducional , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Glicosilação , Óxido Nítrico/metabolismo , Fosforilação , Ratos
20.
Inflamm Bowel Dis ; 18(11): 2149-57, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22508450

RESUMO

BACKGROUND: Assimilation of the preferred nutrient of enterocytes is mediated primarily by sodium (Na)-dependent cotransport (NGct) in the intestine. The predominant NGcT in villus cells, B0AT1, is inhibited secondary to a decrease in cotransporter numbers during chronic intestinal inflammation. In contrast, NGcT mediated by SN2 in crypt cells is stimulated secondary to increased affinity of the cotransporter for glutamine during chronic ileitis. Glucocorticoid is a mainstay of treatment for inflammatory bowel disease. However, its effect on NGcT is not known. METHODS: The inhibition of B0AT1 in villus cells during chronic intestinal inflammation was reversed back to normal by methylprednisolone (MP). This was secondary to the restoration of the cotransporter numbers in the brush border membrane rather than an alteration in the affinity. The stimulation of NGcT in crypt cells during chronic ileitis was also restored back to its normal levels by MP treatment. This reversal was secondary to the restoration of the altered affinity of the cotransporter SN2 for glutamine. RESULTS: Kinetic studies and western blot analysis were consistent with functional studies for both cotransporters. Thus, glucocorticoids restore two uniquely altered Na-glutamine cotransporters, B0AT1 in villus and SN2 in crypt cells during chronic enteritis. CONCLUSIONS: These data indicate that glucocorticoids function as an upstream broad spectrum immune modulator in the chronically inflamed intestine.


Assuntos
Focos de Criptas Aberrantes/tratamento farmacológico , Enterite/tratamento farmacológico , Glutamina/metabolismo , Inflamação/tratamento farmacológico , Metilprednisolona/farmacologia , Microvilosidades/efeitos dos fármacos , Sódio/metabolismo , Focos de Criptas Aberrantes/metabolismo , Focos de Criptas Aberrantes/patologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Western Blotting , Doença Crônica , Enterite/metabolismo , Enterite/patologia , Regulação da Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Cinética , Masculino , Microvilosidades/metabolismo , Microvilosidades/patologia , Coelhos , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA