Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 166: 107341, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717714

RESUMO

BACKGROUND: The majority of studies have shown higher greenness exposure associated with reduced mortality risks, but few controlled for spatially correlated air pollution and traffic noise exposures. We aim to address this research gap in the ELAPSE pooled cohort. METHODS: Mean Normalized Difference Vegetation Index (NDVI) in a 300-m grid cell and 1-km radius were assigned to participants' baseline home addresses as a measure of surrounding greenness exposure. We used Cox proportional hazards models to estimate the association of NDVI exposure with natural-cause and cause-specific mortality, adjusting for a number of potential confounders including socioeconomic status and lifestyle factors at individual and area-levels. We further assessed the associations between greenness exposure and mortality after adjusting for fine particulate matter (PM2.5), nitrogen dioxide (NO2) and road traffic noise. RESULTS: The pooled study population comprised 327,388 individuals who experienced 47,179 natural-cause deaths during 6,374,370 person-years of follow-up. The mean NDVI in the pooled cohort was 0.33 (SD 0.1) and 0.34 (SD 0.1) in the 300-m grid and 1-km buffer. In the main fully adjusted model, 0.1 unit increment of NDVI inside 300-m grid was associated with 5% lower risk of natural-cause mortality (Hazard Ratio (HR) 0.95 (95% CI: 0.94, 0.96)). The associations attenuated after adjustment for air pollution [HR (95% CI): 0.97 (0.96, 0.98) adjusted for PM2.5; 0.98 (0.96, 0.99) adjusted for NO2]. Additional adjustment for traffic noise hardly affected the associations. Consistent results were observed for NDVI within 1-km buffer. After adjustment for air pollution, NDVI was inversely associated with diabetes, respiratory and lung cancer mortality, yet with wider 95% confidence intervals. No association with cardiovascular mortality was found. CONCLUSIONS: We found a significant inverse association between surrounding greenness and natural-cause mortality, which remained after adjusting for spatially correlated air pollution and traffic noise.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Causas de Morte , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poluição do Ar/efeitos adversos
2.
Environ Int ; 144: 106046, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858469

RESUMO

BACKGROUND: Air pollution is an established carcinogen. Evidence for an association with brain tumors is, however, inconclusive. We investigated if individual particulate matter constituents were associated with brain tumor risk. METHODS: From comprehensive national registers, we identified all (n = 12 928) brain tumor cases, diagnosed in Denmark in the period 1989-2014, and selected 22 961 controls, matched on age, sex and year of birth. We established address histories and estimated 10-year mean residential outdoor concentrations of particulate matter < 2.5 µm, primarily emitted black carbon (BC) and organic carbon (OC), and combined carbon (OC/BC), as well as secondary inorganic and organic PM air pollutants from a detailed dispersion model. We used conditional logistic regression to calculate odds ratios (OR) per inter quartile range (IQR) exposure. We adjusted for income, marital and employment status as well as area-level socio-demographic characteristics. RESULTS: Total tumors of the brain were associated with OC/BC (OR: 1.053, 95%CI: 1.005-1.103, per IQR). The data suggested strongest associations for malignant tumors with ORs per IQR for OC/BC, BC and OC of 1.063 (95% CI: 1.007-1.123), 1.036 (95% CI: 1.006-1.067) and 1.030 (95%CI: 0.979-1.085), respectively. The results did not indicate adverse effects of other PM components. CONCLUSIONS: This large, population based study showed associations between primary emitted carbonaceous particles and risk for malignant brain tumors. As the first of its kind, this study needs replication.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Encefálicas , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Neoplasias Encefálicas/epidemiologia , Exposição Ambiental , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA