Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Am J Med Genet A ; 191(2): 554-558, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308391

RESUMO

Congenital heart defect (CHD) is a birth defect that affects the structure of the heart. Although CHD is often multifactorial, it can also be inherited as part of a Mendelian disorder such as in congenital heart defect and ectodermal dysplasia (CHDED). This disorder is caused by de novo variants in PRKD1. Here, we describe a patient with a novel de novo variant of PRKD1 with phenotypic features consistent with CHDED. Previously unreported features were noted including high intracranial pressure (ICP), partial anomalous pulmonary venous return (PAPVR), and bifid uvula. We suggest that these features may be associated with CHDED.


Assuntos
Fissura Palatina , Displasia Ectodérmica , Cardiopatias Congênitas , Humanos , Pressão Intracraniana , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Displasia Ectodérmica/complicações , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Fenótipo
2.
Am J Med Genet A ; 188(10): 3071-3077, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35875935

RESUMO

Cranioectodermal dysplasia (CED) is rare heterogeneous condition. It belongs to a group of disorders defined as ciliopathies and is associated with defective cilia function and structure. To date six genes have been associated with CED. Here we describe a 4-year-old male CED patient whose features include dolichocephaly, multi-suture craniosynostosis, epicanthus, frontal bossing, narrow thorax, limb shortening, and brachydactyly. The patient presented early-onset chronic kidney disease and was transplanted at the age of 2 years and 5 months. At the age of 3.5 years a retinal degeneration was diagnosed. Targeted sequencing by NGS revealed the presence of compound heterozygous variants in the WDR35 gene. The variants are a novel missense change in exon 9 p.(Gly303Arg) and a previously described nonsense variant in exon 18 p.(Leu641*). Our findings suggest that patients with WDR35 defects may be at risk to develop early-onset retinal degeneration. Therefore, CED patients with pathogenic variation in this gene should be assessed at least once by the ophthalmologist before the age of 4 years to detect early signs of retinal degeneration.


Assuntos
Craniossinostoses , Falência Renal Crônica , Distrofias Retinianas , Osso e Ossos/anormalidades , Pré-Escolar , Craniossinostoses/complicações , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Proteínas do Citoesqueleto/genética , Nanismo , Displasia Ectodérmica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mutação , Osteocondrodisplasias , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética
3.
Am J Med Genet A ; 185(4): 1195-1203, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421337

RESUMO

Cranioectodermal dysplasia (CED) is a rare autosomal recessive disorder primarily characterized by craniofacial, skeletal, and ectodermal abnormalities. CED is a chondrodysplasia, which is part of a spectrum of clinically and genetically heterogeneous diseases that result from disruptions in cilia. Pathogenic variants in genes encoding components of the ciliary transport machinery are known to cause CED. Intra- and interfamilial clinical variability has been reported in a few CED studies and the findings of this study align with these observations. Here, we report on five CED patients from four Polish families with identical compound heterozygous variants [c.1922T>G p.(Leu641Ter) and c.2522A>T; p.(Asp841Val)] in WDR35. The frequent occurrence of both identified changes in Polish CED families suggests that these variants may be founder mutations. Clinical evaluation of the CED patients revealed interfamilial clinical variability among the patients. This includes differences in skeletal and ectodermal features as well as variability in development, progression, and severity of renal and liver insufficiency. This is the first report showing significant interfamilial clinical variability in a series of CED patients from unrelated families with identical compound heterozygous variants in WDR35. Our findings strongly indicate that other genetic and non-genetic factors may modulate the progression and expression of the patients' phenotypes.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/genética , Proteínas do Citoesqueleto/genética , Displasia Ectodérmica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Osso e Ossos/patologia , Criança , Pré-Escolar , Cílios/genética , Cílios/patologia , Craniossinostoses/epidemiologia , Craniossinostoses/patologia , Displasia Ectodérmica/epidemiologia , Displasia Ectodérmica/patologia , Feminino , Humanos , Lactente , Masculino , Mutação/genética , Linhagem , Fenótipo , Polônia/epidemiologia
4.
Am J Med Genet A ; 182(10): 2417-2425, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32804427

RESUMO

The ciliary chondrodysplasias represent a group of clinically and genetically heterogeneous disorders that affect skeleton development. Cilia are organelles that project from the surface of many cell types and play an important role during prenatal and postnatal human development. Cranioectodermal dysplasia (Sensenbrenner syndrome, CED) is a ciliopathy primarily characterized by craniofacial, skeletal, and ectodermal abnormalities. To date six genes have been associated with CED: IFT122, WDR35, WDR19, IFT140, IFT43, and IFT52. Prenatal diagnosis of CED is challenging, and genetic testing can facilitate making a correct diagnosis. Here, we report on a family with two male siblings affected by CED: a 3.5 year-old patient and his 2 year-old brother. Molecular analysis of the proband at 1 year of age revealed compound heterozygous variants in WDR35: c.3G>A [p.(Met1-Ala30delinsMetfsTer4)] and c.2522A>T [p.(Asp841Val)]. Ultrasound examination during the second pregnancy revealed an increased nuchal translucency of 4.5 mm and a hypoplastic nasal bone at 12 weeks of gestation. Prenatal diagnostic testing was offered because of an increased risk for chromosomal abnormalities and recurrence risk for CED. Prenatal genetic analysis of a chorionic villus sample detected the WDR35 variants previously identified in the elder brother. This is the first report of a prenatal genetic diagnosis in CED.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/diagnóstico , Proteínas do Citoesqueleto/genética , Displasia Ectodérmica/diagnóstico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Diagnóstico Pré-Natal , Osso e Ossos/patologia , Pré-Escolar , Craniossinostoses/genética , Craniossinostoses/patologia , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Polônia/epidemiologia
5.
Orphanet J Rare Dis ; 15(1): 36, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007091

RESUMO

BACKGROUND: Sensenbrenner syndrome, which is also known as cranioectodermal dysplasia (CED), is a rare, autosomal recessive ciliary chondrodysplasia characterized by a variety of clinical features including a distinctive craniofacial appearance as well as skeletal, ectodermal, liver and renal anomalies. Progressive renal disease can be life-threatening in this condition. CED is a genetically heterogeneous disorder. Currently, variants in any of six genes (IFT122, WDR35, IFT140, IFT43, IFT52 and WDR19) have been associated with this syndrome. All of these genes encode proteins essential for intraflagellar transport (IFT) a process that is required for cilium assembly, maintenance and function. Intra- and interfamilial clinical variability has been reported in CED, which is consistent with CED's genetic heterogeneity and is indicative of genetic background effects. RESULTS: Two male CED patients from two unrelated Polish families were included in this study. Clinical assessment revealed distinctive clinical features of Sensenbrenner syndrome, such as dolichocephaly, shortening of long bones and early onset renal failure. Ectodermal anomalies also included thin hair, short and thin nails, and small teeth in both patients. Next generation sequencing (NGS) techniques were performed in order to determine the underlying genetic cause of the disorder using whole exome sequencing (WES) for patient 1 and a custom NGS-based panel for patient 2. Subsequent qPCR and duplex PCR analysis were conducted for both patients. Genetic analyses identified compound heterozygous variants in the IFT140 gene in both affected individuals. Both patients harbored a tandem duplication variant p.Tyr1152_Thr1394dup on one allele. In addition, a novel missense variant, p.(Leu109Pro), and a previously described p.(Gly522Glu) variant were identified in the second allele in patients 1 and 2, respectively. Segregation analysis of the variants was consistent with the expected autosomal recessive disease inheritance pattern. Both patients had severe renal failure requiring kidney transplantation in early childhood. CONCLUSION: The finding of compound heterozygous IFT140 mutations in two unrelated CED patients provide further evidence that IFT140 gene mutations are associated with this syndrome. Our studies confirm that IFT140 changes in patients with CED are associated with early onset end-stage renal disease. Moreover, this report expands our knowledge of the clinical- and molecular genetics of Sensenbrenner syndrome and it highlights the importance of multidisciplinary approaches in the care of CED patients.


Assuntos
Craniossinostoses , Displasia Ectodérmica , Falência Renal Crônica , Osso e Ossos/anormalidades , Proteínas de Transporte/genética , Pré-Escolar , Displasia Ectodérmica/genética , Humanos , Falência Renal Crônica/genética , Masculino , Mutação/genética , Polônia
6.
Cancer Genet ; 240: 1-4, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31671381

RESUMO

Hereditary pancreatic cancer has been attributed to variants of several cancer predisposition genes including ATM. While heterozygous pathogenic variants in the ATM gene are implicated as a cause of familial breast and pancreatic cancers to our knowledge ATM whole gene deletions have not been previously reported. We describe a contiguous gene deletion of the ATM locus in a multi-generation family of Italian descent with a strong family history of pancreatic cancer. A deletion of one copy of the entire ATM gene was identified by routine panel testing and further characterized by chromosomal microarray analysis. An 11q22.3 microdeletion of approximately 960 kb was identified that is predicted to result in loss of 10 genes including ATM. The deletion was identified in two additional family members including a presymptomatic daughter and an affected sibling. A normal disomic complement of the 11q22.3 region was detected in a third family member with a history of prostate and pancreatic cancer. Additional family members were not available for testing. Given available evidence that ATM haploinsufficiency can increase cancer risk, we predict that the observed copy number loss has likely contributed to hereditary cancer in this family. However, absence of the familial microdeletion in at least one affected family member suggests that ATM deletions are unlikely the sole contributing factor influencing tumor development in affected individuals. This case highlights 11q22.3 microdeletions of the ATM gene region as a possible risk factor for hereditary cancer, including pancreatic cancer. The same case provides a further cautionary tale for over interpretation of cancer risk associated tumor suppressor microdeletions and suggests that the variant may not be sufficient for tumor development or may modify the cancer risks associated with other, yet unidentified hereditary cancer genes.


Assuntos
Adenocarcinoma/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Cromossomos Humanos Par 11/genética , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Adulto , Idoso , Feminino , Deleção de Genes , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Itália , Masculino , Anamnese , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Linhagem
7.
Pediatr Nephrol ; 33(10): 1701-1712, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29974258

RESUMO

BACKGROUND: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling. METHODS: Forty patients from 36 families with nephronophthisis-related ciliopathy were recruited at university medical centers and online. Comprehensive clinical and genotypic data were recorded. Patients without molecular diagnosis were offered genetic analysis. RESULTS: Of 40 patients, 45% had isolated nephronophthisis, 48% syndromic diagnosis, and 7% nephronophthisis with extrarenal features not constituting a recognizable syndrome. Patients developed ESRD at median 13 years (range 5-47). Median age of symptom onset was 9 years in both isolated and syndromic forms (range 5-26 vs. 5-33). Common presenting symptoms were fatigue (42%), polydipsia/polyuria (33%), and hypertension (21%). Renal ultrasound showed small-to-normal-sized kidneys, increased echogenicity (65%), cysts (43%), and abnormal corticomedullary differentiation (32%). Renal biopsies in eight patients showed nonspecific signs of chronic kidney disease (CKD). Twenty-three patients (58%) had genetic diagnosis upon inclusion. Thirteen of those without a genetic diagnosis gave consent for genetic testing, and a cause was identified in five (38%). CONCLUSIONS: Nephronophthisis is genetically and phenotypically heterogeneous and should be considered in children and young adults presenting with persistent fatigue and polyuria, and in all patients with unexplained CKD. As symptom onset can occur into adulthood, presymptomatic monitoring of kidney function in syndromic ciliopathy patients should continue until at least age 30.


Assuntos
Ciliopatias/diagnóstico , Aconselhamento Genético , Testes Genéticos , Doenças Renais Císticas/congênito , Falência Renal Crônica/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idade de Início , Biópsia , Criança , Ciliopatias/complicações , Ciliopatias/genética , Ciliopatias/patologia , Proteínas do Citoesqueleto , Diagnóstico Tardio/prevenção & controle , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Doenças Renais Císticas/complicações , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Falência Renal Crônica/etiologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Países Baixos , Sistema de Registros/estatística & dados numéricos , Fatores de Tempo , Ultrassonografia , Sequenciamento do Exoma , Adulto Jovem
8.
J Med Genet ; 54(7): 490-501, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28264986

RESUMO

BACKGROUND: Hydranencephaly is a congenital anomaly leading to replacement of the cerebral hemispheres with a fluid-filled cyst. The goals of this work are to describe a novel autosomal-recessive syndrome that includes hydranencephaly (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly (MARCH)); to identify its genetic cause(s) and to provide functional insight into pathomechanism. METHODS: We used homozygosity mapping and exome sequencing to identify recessive mutations in a single family with three affected fetuses. Immunohistochemistry, RT-PCR and imaging in cell lines, and zebrafish models, were used to explore the function of the gene and the effect of the mutation. RESULTS: We identified a homozygous nonsense mutation in CEP55 segregating with MARCH. Testing the effect of this allele on patient-derived cells indicated both a reduction of the overall CEP55 message and the production of a message that likely gives rise to a truncated protein. Suppression or ablation of cep55l in zebrafish embryos recapitulated key features of MARCH, most notably renal dysplasia, cerebellar hypoplasia and craniofacial abnormalities. These phenotypes could be rescued by full-length but not truncated human CEP55 message. Finally, we expressed the truncated form of CEP55 in human cells, where we observed a failure of truncated protein to localise to the midbody, leading to abscission failure and multinucleated daughter cells. CONCLUSIONS: CEP55 loss of function mutations likely underlie MARCH, a novel multiple congenital anomaly syndrome. This association expands the involvement of centrosomal proteins in human genetic disorders by highlighting a role in midbody function.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/genética , Mitose/genética , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Edição de Genes , Humanos , Lactente , Masculino , Modelos Biológicos , Proteínas Nucleares/metabolismo , Linhagem , Fenótipo , Frações Subcelulares/metabolismo , Síndrome , Proteínas de Peixe-Zebra/metabolismo
9.
J Pediatr Genet ; 6(1): 18-29, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28180024

RESUMO

Ciliary disorders, which are also referred to as ciliopathies, are a group of hereditary disorders that result from dysfunctional cilia. The latter are cellular organelles that stick up from the apical plasma membrane. Cilia have important roles in signal transduction and facilitate communications between cells and their surroundings. Ciliary disruption can result in a wide variety of clinically and genetically heterogeneous disorders with overlapping phenotypes. Because cilia occur widespread in our bodies many organs and sensory systems can be affected when they are dysfunctional. Ciliary disorders may be isolated or syndromic, and common features are cystic liver and/or kidney disease, blindness, neural tube defects, brain anomalies and intellectual disability, skeletal abnormalities ranging from polydactyly to abnormally short ribs and limbs, ectodermal defects, obesity, situs inversus, infertility, and recurrent respiratory tract infections. In this review, we summarize the features, frequency, morbidity, and mortality of each of the different ciliopathies that occur in pediatrics. The importance of genetics and the occurrence of genotype-phenotype correlations are indicated, and advances in gene identification are discussed. The use of next-generation sequencing by which a gene panel or all genes can be screened in a single experiment is highlighted as this technology significantly lowered costs and time of the mutation detection process in the past. We discuss the challenges of this new technology and briefly touch upon the use of whole-exome sequencing as a diagnostic test for ciliary disorders. Finally, a perspective on the future of genetics in the context of ciliary disorders is provided.

10.
Am J Hum Genet ; 100(2): 281-296, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132690

RESUMO

EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities.


Assuntos
Anormalidades Musculoesqueléticas/genética , N-Acetilglucosaminiltransferases/genética , Osteocondrodisplasias/genética , Alelos , Linhagem Celular , Linhagem Celular Tumoral , Condroitina/sangue , Condroitina/urina , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Glicosaminoglicanos/metabolismo , Humanos , Anormalidades Musculoesqueléticas/diagnóstico , Mutação de Sentido Incorreto , Osteocondrodisplasias/diagnóstico , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética
11.
Sci Rep ; 6: 34764, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708425

RESUMO

Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder that is both genetically and clinically heterogeneous. To date 19 genes have been associated with BBS, which encode proteins active at the primary cilium, an antenna-like organelle that acts as the cell's signaling hub. In the current study, a combination of mutation screening, targeted sequencing of ciliopathy genes associated with BBS, and whole-exome sequencing was used for the genetic characterization of five families including four with classic BBS symptoms and one BBS-like syndrome. This resulted in the identification of novel mutations in BBS genes ARL6 and BBS5, and recurrent mutations in BBS9 and CEP164. In the case of CEP164, this is the first report of two siblings with a BBS-like syndrome with mutations in this gene. Mutations in this gene were previously associated with nephronophthisis 15, thus the current results expand the CEP164-associated phenotypic spectrum. The clinical and genetic spectrum of BBS and BBS-like phenotypes is not fully defined in Pakistan. Therefore, genetic studies are needed to gain insights into genotype-phenotype correlations, which will in turn improve the clinician's ability to make an early and accurate diagnosis, and facilitate genetic counseling, leading to directly benefiting families with affected individuals.


Assuntos
Fatores de Ribosilação do ADP/genética , Síndrome de Bardet-Biedl/genética , Estudos de Associação Genética/métodos , Proteínas dos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Adolescente , Adulto , Proteínas do Citoesqueleto , Análise Mutacional de DNA/métodos , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Proteínas de Ligação a Fosfato , Sequenciamento do Exoma/métodos , Adulto Jovem
12.
Cilia ; 5: 8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069622

RESUMO

BACKGROUND: Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. RESULTS: Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. CONCLUSIONS: Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.

13.
PLoS Genet ; 11(10): e1005575, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485645

RESUMO

Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models. The precise mechanisms by which CC2D2A and other transition zone proteins control protein entrance into the cilium and how they are linked to vesicular trafficking of incoming cargo remain largely unknown. In this work, we identify the centrosomal protein NINL as a physical interaction partner of CC2D2A. NINL partially co-localizes with CC2D2A at the base of cilia and ninl knockdown in zebrafish leads to photoreceptor outer segment loss, mislocalization of opsins and vesicle accumulation, similar to cc2d2a-/- phenotypes. Moreover, partial ninl knockdown in cc2d2a-/- embryos enhances the retinal phenotype of the mutants, indicating a genetic interaction in vivo, for which an illustration is found in patients from a Joubert Syndrome cohort. Similar to zebrafish cc2d2a mutants, ninl morphants display altered Rab8a localization. Further exploration of the NINL-associated interactome identifies MICAL3, a protein known to interact with Rab8 and to play an important role in vesicle docking and fusion. Together, these data support a model where CC2D2A associates with NINL to provide a docking point for cilia-directed cargo vesicles, suggesting a mechanism by which transition zone proteins can control the protein content of the ciliary compartment.


Assuntos
Cerebelo/anormalidades , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Oxigenases de Função Mista/genética , Proteínas Nucleares/metabolismo , Doenças Renais Policísticas/genética , Proteínas/genética , Retina/anormalidades , Proteínas rab de Ligação ao GTP/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto , Encefalocele/metabolismo , Encefalocele/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Técnicas de Silenciamento de Genes , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Proteínas Associadas aos Microtúbulos/genética , Oxigenases de Função Mista/metabolismo , Mutação , Proteínas Nucleares/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Transporte Proteico/genética , Proteínas/metabolismo , Retina/metabolismo , Retina/patologia , Retinose Pigmentar , Transdução de Sinais , Peixe-Zebra , Proteínas rab de Ligação ao GTP/metabolismo
14.
Am J Med Genet A ; 164A(7): 1627-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24677454

RESUMO

Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that is the most frequent monogenic cause of end-stage renal disease in children. Infantile NPHP, often in combination with other features like situs inversus, are commonly caused by mutations in the INVS gene. INVS encodes the ciliary protein inversin, and mutations induce dysfunction of the primary cilia. In this article, we present a family with two severely affected fetuses that were aborted after discovery of grossly enlarged cystic kidneys by ultrasonography before 22 weeks gestation. Exome sequencing showed that the fetuses were homozygous for a previously unreported nonsense mutation, resulting in a truncation in the IQ1 domain of inversin. This mutation induces nonsense-mediated RNA decay, as suggested by a reduced RNA level in fibroblasts derived from the fetus. However, a significant amount of mutant INVS RNA was present in these fibroblasts, yielding mutant inversin protein that was mislocalized. In control fibroblasts, inversin was present in the ciliary axoneme as well as at the basal body, whereas in the fibroblasts from the fetus, inversin could only be detected at the basal body. The phenotype of both fetuses is partly characteristic of infantile NPHP and Potter sequence. We also identified that the fetuses had mild skeletal abnormalities, including shortening and bowing of long bones, which may expand the phenotypic spectrum associated with INVS mutations.


Assuntos
Homozigoto , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Mutação , Fatores de Transcrição/genética , Feto Abortado/patologia , Hibridização Genômica Comparativa , Exoma , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Ultrassonografia Pré-Natal
15.
Am J Hum Genet ; 93(5): 932-44, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24183451

RESUMO

Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.


Assuntos
Proteínas de Transporte/genética , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Povo Asiático/genética , Axonema/genética , Criança , Chlamydomonas/genética , Cílios/genética , Cílios/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Síndrome de Ellis-Van Creveld/patologia , Exoma , Éxons , Humanos , Lactente , Recém-Nascido , Mutação , Conformação Proteica , Proteômica , População Branca/genética
16.
Am J Med Genet A ; 161A(11): 2762-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24123776

RESUMO

Sensenbrenner syndrome, also known as cranioectodermal dysplasia, is a rare multiple anomaly syndrome with distinctive craniofacial appearance, skeletal, ectodermal, connective tissue, renal, and liver anomalies. Dramatic advances with next-generation sequencing have expanded its phenotypic variability and molecular heterogeneity. We review 39 patients including two new patients, one with compound heterozygous novel mutations in WDR35 and a previously unreported multisutural craniosynostosis that may be a part of Sensenbrenner syndrome. In 14 of 25 (56.0%) patients pathogenic mutations have been identified in 4 different genes that regulate (intraflagellar) cilia transport. We compared Sensenbrenner syndrome to asphyxiating thoracic dystrophy-Jeune syndrome (ATD-JS) and other ciliopathies. Our analyses showed that the high anterior hairline, forehead bossing and dolichocephaly (accompanied by sagittal craniosynostosis in more than half of the patients) occur in almost all patients with Sensenbrenner syndrome. Metaphyseal dysplasia with narrow thorax, proximal limb shortness, and short fingers are typical of Sensenbrenner syndrome and ATD-JS. Respiratory complications have been reported in both syndromes, usually less severe with Sensenbrenner syndrome. Proposed diagnostic criteria for Sensenbrenner syndrome include the distinctive craniofacial appearance, ubiquitous brachydactyly and ectodermal anomalies, and sagittal craniosynostosis. Mild heart defects have been noted, but there have been no atrioventricular canal or heterotaxy defects that are common in Ellis-Van Creveld syndrome. We anticipate that the steady identification of molecularly defined patients may allow correlation of phenotype and genotype. Additional natural history data will improve genetic counseling and current guidelines.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Humanos , Lactente , Recém-Nascido , Cariotipagem , Masculino , Fenótipo
17.
J Med Genet ; 50(5): 309-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456818

RESUMO

BACKGROUND: Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. AIMS AND METHODS: To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. RESULTS AND CONCLUSIONS: We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype-phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes.


Assuntos
Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Exoma/genética , Modelos Moleculares , Conformação Proteica , Sequência de Bases , Dineínas do Citoplasma/química , Componentes do Gene , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
18.
Pediatr Nephrol ; 28(6): 863-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22829176

RESUMO

Ciliopathies are a group of clinically and genetically overlapping disorders whose etiologies lie in defective cilia. These are antenna-like organelles on the apical surface of numerous cell types in a variety of tissues and organs, the kidney included. Cilia play essential roles during development and tissue homeostasis, and their dysfunction in the kidney has been associated with renal cyst formation and renal failure. Recently, the term "renal ciliopathies" was coined for those human genetic disorders that are characterized by nephronophthisis, cystic kidneys or renal cystic dysplasia. This review focuses on renal ciliopathies from a human genetics perspective. We survey the newest insights with respect to gene identification and genotype-phenotype correlations, and we reflect on candidate ciliopathies. The opportunities and challenges of next-generation sequencing (NGS) for genetic renal research and clinical DNA diagnostics are also reviewed, and we discuss the contribution of NGS to the development of personalized therapy for patients with renal ciliopathies.


Assuntos
Cílios/fisiologia , Doenças Renais Císticas/genética , Estudos de Associação Genética , Humanos , Doenças Renais Císticas/congênito , Doenças Renais Císticas/terapia , Mutação , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , Insuficiência Renal/etiologia
19.
Cell ; 150(3): 533-48, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863007

RESUMO

Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we identify by whole-exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164, and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exoma , Doenças Renais Císticas/genética , Proteínas dos Microtúbulos/metabolismo , Animais , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Genes Recessivos , Humanos , Proteína Homóloga a MRE11 , Camundongos , Proteínas , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
20.
Am J Hum Genet ; 89(5): 634-43, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22019273

RESUMO

A subset of ciliopathies, including Sensenbrenner, Jeune, and short-rib polydactyly syndromes are characterized by skeletal anomalies accompanied by multiorgan defects such as chronic renal failure and retinitis pigmentosa. Through exome sequencing we identified compound heterozygous mutations in WDR19 in a Norwegian family with Sensenbrenner syndrome. In a Dutch family with the clinically overlapping Jeune syndrome, a homozygous missense mutation in the same gene was found. Both families displayed a nephronophthisis-like nephropathy. Independently, we also identified compound heterozygous WDR19 mutations by exome sequencing in a Moroccan family with isolated nephronophthisis. WDR19 encodes IFT144, a member of the intraflagellar transport (IFT) complex A that drives retrograde ciliary transport. We show that IFT144 is absent from the cilia of fibroblasts from one of the Sensenbrenner patients and that ciliary abundance and morphology is perturbed, demonstrating the ciliary pathogenesis. Our results suggest that isolated nephronophthisis, Jeune, and Sensenbrenner syndromes are clinically overlapping disorders that can result from a similar molecular cause.


Assuntos
Cílios , Displasia Ectodérmica/genética , Mutação de Sentido Incorreto , Doenças Renais Policísticas/genética , Proteínas/genética , Síndrome de Costela Curta e Polidactilia/genética , Doenças Torácicas/genética , Adolescente , Adulto , Criança , Cílios/genética , Cílios/patologia , Anormalidades Craniofaciais/genética , Proteínas do Citoesqueleto , Exoma/genética , Feminino , Fibroblastos/metabolismo , Flagelos/genética , Flagelos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Dados de Sequência Molecular , Marrocos , Países Baixos , Noruega , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Doenças Renais Policísticas/congênito , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA