Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(30): eadf6210, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494452

RESUMO

KRAS/ERK pathway phosphorylates DICER1, causing its nuclear translocation, and phosphomimetic Dicer1 contributes to tumorigenesis in mice. Mechanisms through which phospho-DICER1 regulates tumor progression remain undefined. While DICER1 canonically regulates microRNAs (miRNA) and epithelial-to-mesenchymal transition (EMT), we found that phosphorylated nuclear DICER1 (phospho-nuclear DICER1) promotes late-stage tumor progression in mice with oncogenic Kras, independent of miRNAs and EMT. Instead, we observe that the murine AT2 tumor cells exhibit altered chromatin compaction, and cells from disorganized advanced tumors, but not localized tumors, express gastric genes. Collectively, this results in subpopulations of tumor cells transitioning from a restricted alveolar to a broader endodermal lineage state. In human LUADs, we observed expression of phospho-nuclear DICER1 in advanced tumors together with the expression of gastric genes. We define a multimeric chromatin-DICER1 complex composed of the Mediator complex subunit 12, CBX1, MACROH2A.1, and transcriptional regulators supporting the model that phospho-nuclear DICER1 leads to lineage reprogramming of AT2 tumor cells to mediate lung cancer progression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Cromatina/genética , MicroRNAs/genética , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37206989

RESUMO

Caenorhabditis elegans gene sart-3 was first identified as the homolog of human SART3 ( S quamous cell carcinoma A ntigen R ecognized by T -cells 3). In humans, expression of SART3 is associated with squamous cell carcinoma, thus most of the studies focus on its potential role as a target of cancer immunotherapy (Shichijo et al. 1998; Yang et al. 1999). Furthermore, SART3 is also known as Tip110 (Liu et al. 2002; Whitmill et al. 2016) in the context of HIV virus host activation pathway. Despite these disease related studies, the molecular function of this protein was not revealed until the yeast homolog was identified as spliceosome U4/U6 snRNP recycling factor (Bell et al. 2002). The function of SART3 in development, however, remains unknown. Here we report that the C. elegans sart-3 mutant hermaphrodites exhibit a Mog ( M asculinization O f the G ermline) phenotype in adulthood suggesting that sart-3 normally functions to regulate the switch from spermatogenic to oogenic gametic sex.

3.
Cancer Res ; 79(10): 2662-2668, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30914430

RESUMO

Dicer1 functions as a tumor suppressor in mouse models. In humans, somatic mutations are associated with many cancers in adults, and patients with DICER1 syndrome with DICER1 germline mutations are susceptible to childhood cancers. Dicer is phosphorylated by the ERK-MAP kinase pathway and because this pathway is activated in human cancers, we asked whether phosphorylated Dicer1 contributed to tumor development. In human endometrioid cancers, we discovered that phosphorylated DICER1 is significantly associated with invasive disease. To test a direct involvement of Dicer1 phosphorylation in tumor development, we studied mice with phosphomimetic alterations at the two conserved serines phosphorylated by ERK and discovered that a phosphomimetic Dicer1 drives tumor development and dissemination in two independent murine cancer models (KRas+/LA1 and p53+/- ). Our findings demonstrate that phosphomimetic Dicer1 promotes tumor development and invasion. SIGNIFICANCE: This work highlights the relevance of Dicer1 phosphorylation in mammalian tumor development and dissemination.


Assuntos
Carcinogênese/genética , RNA Helicases DEAD-box/genética , Neoplasias/genética , Neoplasias/patologia , Ribonuclease III/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fosforilação/genética , Transdução de Sinais/genética
4.
Methods Mol Biol ; 1487: 317-335, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27924578

RESUMO

The Rat Sarcoma (RAS) GTPAse-mediated extracellular signal-regulated kinase (ERK) pathway regulates multiple biological processes across metazoans. In particular during Caenorhabditis elegans oogenesis, ERK signaling has been shown to regulate over seven distinct biological processes in a temporal and sequential manner. To fully elucidate how ERK signaling cascade orchestrates these different biological processes in vivo, identification of the direct functional substrates of the pathway is critical. This chapter describes the methods that were used to identify ERK substrates in a global manner and study their functions in the germline. These approaches can also be generally applied to study ERK-dependent biological processes in other systems.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Biologia Computacional/métodos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte , Bases de Dados Genéticas , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica , Imuno-Histoquímica , Oogênese/genética , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Software , Especificidade por Substrato , Navegador
5.
Genetics ; 203(2): 749-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27029730

RESUMO

Dis3 encodes a conserved RNase that degrades or processes all RNA species via an N-terminal PilT N terminus (PIN) domain and C-terminal RNB domain that harbor, respectively, endonuclease activity and 3'-5' exonuclease activity. In Schizosaccharomyces pombe, dis3 mutations cause chromosome missegregation and failure in mitosis, suggesting dis3 promotes cell division. In humans, apparently hypomorphic dis3 mutations are found recurrently in multiple myeloma, suggesting dis3 opposes cell division. Except for the observation that RNAi-mediated depletion of dis3 function drives larval arrest and reduces tissue growth in Drosophila, the role of dis3 has not been rigorously explored in higher eukaryotic systems. Using the Drosophila system and newly generated dis3 null alleles, we find that absence of dis3 activity inhibits cell division. We uncover a conserved CDK1 phosphorylation site that when phosphorylated inhibits Dis3's exonuclease, but not endonuclease, activity. Leveraging this information, we show that Dis3's exonuclease function is required for mitotic cell division: in its absence, cells are delayed in mitosis and exhibit aneuploidy and overcondensed chromosomes. In contrast, we find that modest reduction of dis3 function enhances cell proliferation in the presence of elevated Ras activity, apparently by accelerating cells through G2/M even though each insult by itself delays G2/M. Additionally, we find that dis3 and ras genetically interact in worms and that dis3 can enhance cell proliferation under growth stimulatory conditions in murine B cells. Thus, reduction, but not absence, of dis3 activity can enhance cell proliferation in higher organisms.


Assuntos
Ciclo Celular/genética , Evolução Molecular , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Proteínas ras/genética , Animais , Caenorhabditis elegans/genética , Células Cultivadas , Drosophila/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Schizosaccharomyces/genética , Proteínas ras/metabolismo
6.
Dev Cell ; 27(2): 227-240, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24120884

RESUMO

Coupling the production of mature gametes and fertilized zygotes to favorable nutritional conditions improves reproductive success. In invertebrates, the proliferation of female germline stem cells is regulated by nutritional status. However, in mammals, the number of female germline stem cells is set early in development, with oocytes progressing through meiosis later in life. Mechanisms that couple later steps of oogenesis to environmental conditions remain largely undefined. We show that, in the presence of food, the DAF-2 insulin-like receptor signals through the RAS-ERK pathway to drive meiotic prophase I progression and oogenesis; in the absence of food, the resultant inactivation of insulin-like signaling leads to downregulation of the RAS-ERK pathway, and oogenesis is stalled. Thus, the insulin-like signaling pathway couples nutrient sensing to meiotic I progression and oocyte production in C. elegans, ensuring that oocytes are only produced under conditions favorable for the survival of the resulting zygotes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Prófase Meiótica I , Oogênese , Receptor de Insulina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ativação Enzimática , Fatores de Transcrição Forkhead , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
7.
PLoS One ; 8(3): e59560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555707

RESUMO

Deletion of single genes from expanded gene families in bacterial genomes often does not elicit a phenotype thus implying redundancy or functional non-essentiality of paralogous genes. The molecular mechanisms that facilitate evolutionary maintenance of such paralogs despite selective pressures against redundancy remain mostly unexplored. Here, we investigate the evolutionary, genetic, and functional interaction between the Helicobacter pylori cysteine-rich paralogs hcpG and hcpC in the context of H. pylori infection of cultured mammalian cells. We find that in natural H. pylori populations both hcpG and hcpC are maintained by positive selection in a dual genetic relationship that switches from complete redundancy during early infection, whereby ΔhcpC or ΔhcpG mutants themselves show no growth defect but a significant growth defect is seen in the ΔhcpC,ΔhcpG double mutant, to quantitative redundancy during late infection wherein the growth defect of the ΔhcpC mutant is exacerbated in the ΔhcpC,ΔhcpG double mutant although the ΔhcpG mutant itself shows no defect. Moreover, during early infection both hcpG and hcpC are essential for optimal translocation of the H. pylori HspB/GroEL chaperone, but during middle-to-late infection hcpC alone is necessary and sufficient for HspB/GroEL translocation thereby revealing the lack of functional compensation among paralogs. We propose that evolution of context-dependent differences in the nature of genetic redundancy, and function, between hcpG and hcpC may facilitate their maintenance in H. pylori genomes, and confer robustness to H. pylori growth during infection of cultured mammalian cells.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cisteína , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Chaperonina 60/metabolismo , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Genes Bacterianos/genética , Proteínas de Choque Térmico/metabolismo , Helicobacter pylori/metabolismo , Humanos , Dados de Sequência Molecular , Polimorfismo Genético , Transporte Proteico , Seleção Genética , Especificidade da Espécie
8.
Nat Struct Mol Biol ; 20(5): 620-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23584453

RESUMO

Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc-Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc-induced through interaction with the phosphorylated receptor-releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais , Sítios de Ligação , Linhagem Celular , Humanos , Ligação Proteica , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
9.
Proc Natl Acad Sci U S A ; 106(12): 4776-81, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19264959

RESUMO

RAS-extracellular signal regulated kinase (ERK) signaling governs multiple aspects of cell fate specification, cellular transitions, and growth by regulating downstream substrates through phosphorylation. Understanding how perturbations to the ERK signaling pathway lead to developmental disorders and cancer hinges critically on identification of the substrates. Yet, only a limited number of substrates have been identified that function in vivo to execute ERK-regulated processes. The Caenorhabditis elegans germ line utilizes the well-conserved RAS-ERK signaling pathway in multiple different contexts. Here, we present an integrated functional genomic approach that identified 30 ERK substrates, each of which functions to regulate one or more of seven distinct biological processes during C. elegans germ-line development. Our results provide evidence for three themes that underlie the robustness and specificity of biological outcomes controlled by ERK signaling in C. elegans that are likely relevant to ERK signaling in other organisms: (i) multiple diverse ERK substrates function to control each individual biological process; (ii) different combinations of substrates function to control distinct biological processes; and (iii) regulatory feedback loops between ERK and its substrates help reinforce or attenuate ERK activation. Substrates identified here have conserved orthologs in humans, suggesting that insights from these studies will contribute to our understanding of human diseases involving deregulated ERK activity.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Germinativas/enzimologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Biologia Computacional , Ativação Enzimática , Retroalimentação Fisiológica , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Sistema de Sinalização das MAP Quinases , Mamíferos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Fosforilação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA