Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(26): 10748-10755, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38877968

RESUMO

In a high-pressure environment, electrospray ionization (ESI) can be achieved without discharge between the emitter and the counter electrode, thus enabling the generation of gas-phase ions from liquid with high surface tension, such as pure water, which requires a high onset voltage for stable ESI. In this study, the ion dissociation during the transferring of ions/charged droplets from a superatmospheric pressure environment to vacuum has been systematically investigated using benzyl ammonium thermometer ions. The ion source pressure did not affect the internal energy distribution of ions, whereas the gas throughput into the first vacuum stage clearly influences the internal energy distribution of the ions. The increase in the gas throughput increased the density of molecules/atoms presented in ion transfer/focusing electrodes located in the first vacuum stage. As a result, the mean free path of ions in the first vacuum stage decreases, and the energy of ions decreases by decreasing the kinetic energy involved in each collision between ions and residue gas. The gas throughput into the first vacuum stage is found to describe the internal energy distribution of ions associated with the local conditions more quantitatively instead of using the measured pressure of the vacuum stage, which is different from the effective local pressure. This study also demonstrated the controlled dissociation of ions using the ion transfer settings of the instrument in combination with ion inlet tubes of different sizes.

2.
Anal Chem ; 96(21): 8552-8559, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38741470

RESUMO

Long-lived proteins undergo chemical modifications that can cause age-related diseases. Among these chemical modifications, isomerization is the most difficult to identify. Isomerization often occurs at the aspartic acid (Asp) residues. In this study, we used tandem mass spectrometry equipped with a newly developed ion activation method, hydrogen attachment dissociation (HAD), to analyze peptides containing Asp isomers. Although HAD preferentially produces [cn + 2H]+ and [zm + 2H]+ via N-Cα bond cleavage, [cn + 58 + 2H]+ and [zm - 58 + 2H]+ originate from the fragmentation of the isoAsp residue. Notably, [cn + 58 + 2H]+ and [zm - 58 + 2H]+ could be used as diagnostic fragment ions for the isoAsp residue because these fragment ions did not originate from the Asp residue. The detailed fragmentation mechanism was investigated by computational analysis using density functional theory. According to the results, hydrogen attachment to the carbonyl oxygen in the isoAsp residue results in the Cα-Cß bond cleavage. The experimental and theoretical joint study indicates that the present method allows us to discriminate Asp and isoAsp residues, including site identification of the isoAsp residue. Moreover, we demonstrated that the molar ratio of peptide isomers in the mixture could be estimated from their fragment ion abundance. Therefore, tandem mass spectrometry with HAD is a useful method for the rapid discrimination and semiquantitative analysis of peptides containing isoAsp residues.


Assuntos
Ácido Aspártico , Hidrogênio , Ácido Isoaspártico , Peptídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Ácido Aspártico/química , Ácido Aspártico/análise , Ácido Isoaspártico/química , Ácido Isoaspártico/análise , Peptídeos/química , Peptídeos/análise , Hidrogênio/química , Isomerismo
3.
J Am Soc Mass Spectrom ; 33(6): 1011-1021, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587880

RESUMO

Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) with a reducing matrix is believed to be initiated by hydrogen transfer from the matrix to the peptide. Several new matrices have recently been developed to achieve more efficient MALDI-ISD. In particular, the use of matrices containing aniline groups facilitates MALDI-ISD to a greater extent than that of matrices containing phenol groups, although the N-H bond in aniline is stronger than the O-H bond in phenol. In this study, photoelectron yield spectroscopy of matrix solids revealed that conversion of the phenol group to the aniline group decreased the ionization energy of the matrix solids. Crucially, the use of a matrix with lower ionization energy has been found to result in efficient cleavage at N-Cα and disulfide bonds by MALDI-ISD. Therefore, electron association with the peptide rather than the fragmentation mechanism involving hydrogen atom attachment is proposed as the initial step of the MALDI-ISD process. In this mechanism, electron transfer from the reducing matrix to the peptide produces a peptide anion radical, which provides either a [cn + H]/[zm]• or [an]•/[ym + H] fragment pair. Fragmentation of the peptide anion radical strongly depends on the gas-phase acidity of the matrix used. Subsequently, the resultant fragments/radicals underwent a reaction in the MALDI plume, producing observable even-electron ions. Consequently, MALDI-ISD fragments are observed as both positive and negative ions, even though MALDI-ISD with a reducing matrix involves fragmentation of peptide anion radicals. The proposed mechanism is suitable for obtaining a better understanding of the MALDI-ISD process.


Assuntos
Hidrogênio , Peptídeos , Compostos de Anilina , Hidrogênio/química , Íons , Peptídeos/química , Fenóis , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
J Sep Sci ; 44(18): 3489-3496, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34254740

RESUMO

2-Hydroxyglutaric acid is a chiral metabolite whose enantiomers specifically accumulate in different diseases. An enantiomeric excess of the d-form in biological specimens reflects the existence of various pathogenic mutations in cancer patients, however, conventional methods using gas or liquid chromatography and capillary electrophoresis had not been used for large clinical studies because they require multiple analytical instruments and a long run time to separate the enantiomers. Here, we present a rapid separation method for dl-2-hydroxyglutaric acid using a chiral derivatizing reagent and field asymmetric waveform ion mobility spectrometry/mass spectrometry, which requires a single analytical instrument and <1 s for the separation. We compared three derivatization methods and found that a method using (S)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine enables the separation. In addition, we were able to detect dl-2-hydroxyglutaric acid in standard solution at lower concentrations than that previously reported for the serum. These results show the potential of the method to be used in clinical analysis.

5.
J Mass Spectrom ; 56(4): e4530, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32469146

RESUMO

Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) causes the selective cleavage of Cα -C peptide bonds when an oxidizing matrix is used, and the fragmentation involves the hydrogen abstraction from a peptide by a matrix. The hydrogen abstraction from either an amide nitrogen or ß-carbon atom has been proposed to be the initial step leading to the Cα -C bond cleavage. In this regard, the production of [a]+ fragments originated upon bond cleavage at the C-terminal side of phenylglycine residues strongly suggested that that the Cα -C bond cleavage occurred through a nitrogen-centered radical intermediate and that the fragmentation through a ß-carbon-centered radical intermediate can be ruled out from the MALDI-ISD process, because phenylglycine residues do not contain ß-carbon atoms. The Cα -C bond cleavage of such nitrogen-centered radical initially produced an [a]•/[x - H] fragment pair, and then the [a]• radical either reacted with the matrix or underwent loss of the side-chain, leading to [a - H] or [d - H] fragment. The Cα -C bond cleavage at the C-terminal side of phenylglycine and phenylalanine residues only generated [a]+ fragments, whereas that of homophenylalanine and S-methylated cysteine residues provided both [a]+ and [d]+ fragments. The yield of [d]+ fragments was dependent on the chemical stability of the resultant radicals formed upon side-chain loss. MALDI-ISD produced [M - H + matrix]+ , [M - 16 + H]+ , [M - 32 + H]+ , and [d]+ fragments, when the analyte peptide contained a methionine residue. These fragments were formed upon abstraction of a hydrogen atom from the side-chain of a methionine residue and its subsequent reaction with the matrix. The oxidation of methionine residues suppressed the hydrogen abstraction from their side-chain.


Assuntos
Hidrogênio/química , Fragmentos de Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Amidas/química , Carbono/química , Cisteína/química , Glicina/química , Metionina/química , Modelos Moleculares , Nitrogênio/química , Oxirredução , Fenilalanina/química
6.
Anal Chem ; 92(24): 15773-15780, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33256396

RESUMO

Tandem mass spectrometry (MS/MS) with radical-based fragmentation was developed recently, which involves the reaction of hydrogen atoms and peptides in a process called hydrogen attachment/abstraction dissociation (HAD). HAD mainly produces [cn + 2H]+ and [zm + 2H]+ via hydrogen attachment to the carbonyl oxygen on the peptide backbone. In addition, HAD often generates [an + 2H]+ and [xm + 2H]+. To explain the formation of [an + 2H]+ and [xm + 2H]+, hydrogen attachment to the carbonyl carbon atom on the peptide backbone is proposed to initiate Cα-C bond cleavage. The resultant hydrogen-abundant oxygen-centered radical intermediate undergoes radical-induced dissociation to give [an + H]+• and [xm + 2H]+. Subsequently, [an + 2H]+ was produced by the reaction of [an + H]+• and a hydrogen atom. The fragment ions formed by the cleavage of N-Cα and Cα-C bonds are observed in the HAD-MS/MS spectra, and the mass differences of these fragment ions correspond to the mass of peptide bonds. Consequently, HAD-MS/MS allows the identification of post-translational modifications on the peptide backbone. In addition, HAD-MS/MS provides a consecutive series of [cn + 2H]+ and [an + 2H]+ as the N-terminal fragments, as well as [zm + 2H]+ and [xm + 2H]+, which enables the sequencing of peptides with post-translational modification, including the discrimination of modifications on the side chain and backbone.


Assuntos
Amidas/química , Hidrogênio/química , Peptídeos/química , Gases/química , Tamanho da Partícula , Propriedades de Superfície , Espectrometria de Massas em Tandem
7.
J Am Soc Mass Spectrom ; 31(9): 1918-1926, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32687357

RESUMO

Although the N-H bond in peptide backbones is stronger than the C-H bond, hydrogen abstraction from the amide nitrogen is considered to be the initial step in the Cα-C bond cleavage of peptide backbones by matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) when using an oxidizing matrix. MALDI-ISD induces Cα-C bond cleavage in most amino acid residues, whereas the N-terminal sides of proline (Pro) residues preferentially undergo peptide bond cleavage, which cannot be explained by the previously proposed mechanism involving hydrogen abstraction from peptides. To explain the whole MALDI-ISD process, electron abstraction from peptides by the oxidizing matrix is proposed as the initial step in the MALDI-ISD process. The electron abstraction occurs from either nitrogen or oxygen in the peptide backbone and induces the cleavage of both Cα-C and N-H bonds in most amino acid residues, except for those on the N-terminal sides of Pro residues. Electron abstraction from the Pro residues induces the cleavage of both peptide and Cα-C bonds, which is consistent with MALDI-ISD experimental results. The electron transfer from the peptide to the oxidizing matrix occurs simultaneously with the formation of matrix ions, which is considered to be the initial ion formation process in MALDI. The resultant peptide radical cation produces protonated and neutral molecules/radicals, which undergo subsequent ion-molecule reactions in the MALDI plume, finally yielding the ions that are observed in MALDI-ISD spectrum. As a result, the fragment ions formed by MALDI-ISD are observed as both positive and negative ions.


Assuntos
Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Elétrons , Hidrogênio/química , Lasers , Modelos Moleculares , Nitrogênio/química , Oxirredução
8.
Phys Chem Chem Phys ; 21(47): 26049-26057, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31746862

RESUMO

A combination of tandem mass spectrometry (MS/MS) and hydrogen attachment dissociation (HAD) is a useful method for peptide sequence analysis. In this study, gas-phase fragmentation induced by the attachment of hydrogen to peptides containing disulfide bonds was investigated. Hydrogen attachment induced the cleavage of either the disulfide or N-Cα bond, which competitively occurred during HAD. The disulfide bond cleavage proceeded through an intermediate, which contains a thiyl radical (-S˙) and a thiol group (-SH). In contrast, N-Cα bond cleavage produced an intermediate containing an enol-imine group and α-carbon radical. The intermediate α-carbon radical then attacked the disulfide bond, resulting in a cyclic [z]+ fragment. The counterpart, [c + H]+˙ with a thiyl radical underwent further hydrogen attachment, producing [c + 2H]+. Because both disulfide and N-Cα bonds were cleaved by a single hydrogen attachment event, HAD-MS/MS can provide sequence information for the backbone region in the disulfide loop.


Assuntos
Dissulfetos/química , Hidrogênio/química , Peptídeos/química , Teoria da Densidade Funcional
9.
Anal Chem ; 91(16): 10549-10556, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31310507

RESUMO

Tandem mass spectrometry (MS/MS) with radical-based fragmentation involving the attachment or abstraction of hydrogen to peptides, in a process called hydrogen attachment/abstraction dissociation (HAD), has been recently developed. HAD-MS/MS is considered a useful method for the analysis of proteins with post-translational modification (PTM) because of its ability to determine the PTM site on proteins. In the present investigation, we analyzed highly acidic sulfopeptides and sulfoprotein digests using negative-ion HAD-MS/MS combined with matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). In general, MALDI and ESI produced singly and multiply charged peptides, respectively. HAD of singly deprotonated sulfopeptides preferentially produced fragment ions with sulfonation, whereas both sulfonated and nonsulfonated fragment ions were observed in the HAD-MS/MS spectrum of multiply deprotonated sulfopeptides. A comparison of the MALDI and ESI HAD-MS/MS spectra allows the discrimination of sulfonated and nonsulfonated fragments, which would be helpful in performing de novo sequencing of sulfopeptides. In addition, the combination of ESI-based HAD-MS/MS and liquid chromatography (LC) allows the analysis of sulfopeptides present in protein digests. LC-ESI-MS/MS with HAD is a potentially useful method for sulfoproteomic application.


Assuntos
Hidrogênio/química , Peptídeos/análise , Espectrometria de Massas em Tandem
10.
J Am Soc Mass Spectrom ; 30(8): 1491-1502, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31147890

RESUMO

Nitrogen-centered and ß-carbon-centered hydrogen-deficient peptide radicals are considered to be intermediates in the matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD)-induced Cα-C bond cleavage of peptide backbones when using an oxidizing matrix. To understand the general mechanism of Cα-C bond cleavage by MALDI-ISD, I study the fragmentation of model peptides and investigate the fragment formation pathways using calculations with density functional theory and transition state theory. The calculations indicate that the nitrogen-centered radical immediately undergoes Cα-C bond cleavage, leading to the formation of an a•/x fragment pair. In contrast, the dissociation of the ß-carbon-centered radical is kinetically feasible under MALDI-ISD conditions, leading to the formation of an a/x• fragment pair. To discriminate these processes, I focus on the yield of d fragments, which originate from a• radicals through radical-induced side-chain loss, not from a fragments. The Cα-C bond cleavage on the C-terminal side of the carbamidomethylated cysteine residue is found to produce d fragments instead of a fragments. According to the calculation of the rate constant, the corresponding fragmentation occurs within 1 ns. The intense signal arising from d fragments and the lack of or weak signal from a fragments strongly suggest that the Cα-C bond cleavage occurs through a nitrogen-centered radical intermediate. In addition to the side-chain loss, the resulting a• radical undergoes hydrogen atom abstraction by the matrix. The results for a deuterium-labeled peptide indicate that the matrix abstracts a hydrogen atom from either the amide nitrogen or the ß-carbon.


Assuntos
Substância P/química , Sequência de Aminoácidos , Carbono/química , Hidrogênio/química , Modelos Moleculares , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
11.
Phys Chem Chem Phys ; 21(22): 11633-11641, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31115400

RESUMO

In this study, we use a combination of tandem mass spectrometry and hydrogen radical-mediated fragmentation techniques to analyze the sequence of peptides. We focus on fragmentation induced by the attachment of hydrogen atoms to the histidine and tryptophan residue side-chains in the peptide that occurs in the gas-phase. The hydrogen atom attached to the imidazole and indole rings in the histidine and tryptophan residues, respectively, and the resulting intermediate experienced Cα-Cß bond cleavage. The detailed fragmentation mechanism is investigated by computational analysis using density functional theory. According to the results, hydrogen attachment occurs at the C-5 position in histidine and at the C-2 position in the tryptophan, which has a lower activation energy compared with the other positions and the resulting intermediate radicals yielded fragments due to Cα-Cß bond cleavage. For the peptides that contain the histidine and tryptophan residues, cleavages in the Cα-Cß and N-Cα bonds occurred independently. Therefore, the method presented in this study is applicable when analyzing peptides that contain histidine and tryptophan residues.

12.
Phys Chem Chem Phys ; 20(18): 13057-13067, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29713718

RESUMO

Mass spectrometry with hydrogen-radical-mediated fragmentation techniques has been used for the sequencing of proteins/peptides. The two methods, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) and hydrogen attachment/abstraction dissociation (HAD) are known as hydrogen-radical-mediated fragmentation techniques. MALDI-ISD occurs during laser induced desorption processes, whereas HAD utilizes the association of hydrogen with peptide ions in the gas phase. In this study, the general mechanisms of MALDI-ISD and HAD of peptides were investigated. We demonstrated the fragmentation of four model peptides and investigated the fragment formation pathways using density functional theory (DFT) calculations. The current experimental and computational joint study indicated that MALDI-ISD and HAD produce aminoketyl radical intermediates, which immediately undergo radical-induced cleavage at the N-Cα bond located on the C-terminal side of the radical site, leading to the c'/z˙ fragment pair. In the case of MALDI-ISD, the z˙ fragments undergo a subsequent reaction with the matrix to give z' and matrix adducts of the z fragments. In contrast, the c' and z˙ fragments react with hydrogen atoms during the HAD processes, and various fragment species, such as c˙, c', z˙ and z', were observed in the HAD-MS/MS mass spectra.


Assuntos
Hidrogênio/química , Peptídeos/química , Radicais Livres/química , Íons/química , Modelos Químicos , Teoria Quântica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
13.
J Am Soc Mass Spectrom ; 28(12): 2561-2568, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28875264

RESUMO

The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D-myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3-, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3- in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. Graphical Abstract.

14.
J Phys Chem B ; 118(43): 12318-25, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25271566

RESUMO

Electron transfer dissociation (ETD) has been used for peptide sequencing. Since ETD preferentially produces the c'/z(•) fragment pair, peptide sequencing is generally performed by interpretation of mass differences between series of consecutive c' and z(•) ions. However, the presence of free cysteine residues in a precursor promotes peptide bond cleavage, hindering interpretation of the ETD spectrum. In the present study, the divalent group XII metals, such as Zn(2+), Cd(2+) and Hg(2+), were used as charge carriers to produce metal-peptide complexes. The thiol group is deprotonated by complexation with the group XII metal. The formation of b and y' ions was successfully suppressed by using the zinc-peptide complex as a precursor, indicating Zn(2+)-aided ETD to be a useful method for sequencing of cysteine-containing peptides. By contrast, ETD of Cd(2+)- and Hg(2+)-peptide complexes mainly led to SH2 loss and radical cation formation, respectively. These processes were mediated by recombination energy between the metal cation and an electron. The presence of monovalent cadmium and neutral mercury in ETD products was confirmed by MS(3) analysis with collision-induced dissociation.


Assuntos
Cisteína/química , Espectrometria de Massas , Metais Pesados/química , Peptídeos/química , Sequência de Aminoácidos , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular
15.
J Am Soc Mass Spectrom ; 25(6): 1040-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24700120

RESUMO

Matrix-assisted laser desorption/ionization in-source decay produces highly informative fragments for the sequencing of peptides/proteins. Among amino acids, cysteine and proline residues were found to specifically influence the fragment yield. As they are both frequently found in small peptide structures for which de novo sequencing is mandatory, the understanding of their specific behaviors would allow useful fragmentation rules to be established. In the case of cysteine, a c•/w fragment pair originating from Xxx-Cys is formed by side-chain loss from the cysteine residue. The presence of a proline residue contributes to an increased yield of ISD fragments originating from N-Cα bond cleavage at Xxx1-Xxx2Pro, which is attributable to the cyclic structure of the proline residue. Our results suggest that the aminoketyl radical formed by MALDI-ISD generally induces the homolytic N-Cα bond cleavage located on the C-terminal side of the radical site. In contrast, N-Cα bond cleavage at Xxx-Pro produces no fragments and the N-Cα bond at the Xxx1-Xxx2Pro bond is alternatively cleaved via a heterolytic cleavage pathway.


Assuntos
Cisteína/química , Oligopeptídeos/química , Prolina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Conformação Molecular
16.
J Am Soc Mass Spectrom ; 25(6): 1029-39, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671694

RESUMO

The use of metal salts in electrospray ionization (ESI) of peptides increases the charge state of peptide ions, facilitating electron transfer dissociation (ETD) in tandem mass spectrometry. In the present study, K(+) and Ca(2+) were used as charge carriers to form multiply-charged metal-peptide complexes. ETD of the potassium- or calcium-peptide complex was initiated by transfer of an electron to a proton remote from the metal cation, and a c'-z• fragment complex, in which the c' and z• fragments were linked together via a metal cation coordinating with several amino acid residues, was formed. The presence of a metal cation in the precursor for ETD increased the lifetime of the c'-z• fragment complex, eventually generating c• and z' fragments through inter-fragment hydrogen migration. The degree of hydrogen migration was dependent on the location of the metal cation in the metal-peptide complex, but was not reconciled with conformation of the precursor ion obtained by molecular mechanics simulation. In contrast, the location of the metal cation in the intermediate suggested by the ETD spectrum was in agreement with the conformation of "proton-removed" precursors, indicating that the charge reduction of precursor ions by ETD induces conformational rearrangement during the fragmentation process.


Assuntos
Cálcio/química , Hidrogênio/química , Peptídeos/química , Potássio/química , Cátions/química , Elétrons , Conformação Proteica , Espectrometria de Massas em Tandem
17.
Anal Chem ; 86(5): 2451-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24512348

RESUMO

Matrix-assisted laser desorption ionization in-source decay (MALDI-ISD) is a useful method for top-down sequencing of proteins and preferentially produces the c'/z(•) fragment pair. Subsequently, radical z(•) fragments undergo a variety of radical reactions. This work is focused on the chemical properties of the 1,5-diaminonaphthalene (1,5-DAN) adducts on z fragment ions (zn*), which are abundant in MALDI-ISD spectra. Postsource decay (PSD) of the zn* fragments resulted in specific peptide bond cleavage adjacent to the binding site of 1,5-DAN, leading to the preferential formation of y'n-1 fragments. The dominant loss of an amino acid with 1,5-DAN from zn* can be used in pseudo-MS(3) mode to identify the C-terminal side fragments from a complex MALDI-ISD spectrum or to determine missed cleavage residues using MALDI-ISD. Although the N-Cα bond at the N-terminal side of Pro is not cleaved by MALDI-ISD, pseudo-MS(3) via zn* can confirm the presence of a Pro residue.


Assuntos
2-Naftilamina/análogos & derivados , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , 2-Naftilamina/química
18.
Anal Chem ; 85(16): 7809-17, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23879863

RESUMO

The type of ions detected after in-source decay (ISD) in a MALDI source differs according to the ion source pressure and on the mass analyzer used. We present the mechanism leading to the final ISD ions for a Fourier transform-ion cyclotron resonance mass spectrometer (FTICR MS). The MALDI ion source was operated at intermediate pressure to cool the resulting ions and increase their lifetime during the long residence times in the FTICR ion optics. This condition produces not only c', z', and w fragments, but also a, y', and d fragments. In particular, d ions help to identify isobaric amino acid residues present near the N-terminal amino acid. Desorbed ions collide with background gas during desorption, leading to proton mobilization from Arg residues to a less favored protonation site. As a result, in the case of ISD with MALDI FTICR, the influence of the Arg residue in ISD fragmentation is less straightforward than for TOF MS and the sequence coverage is thus improved. MALDI-ISD combined with FTICR MS appears to be a useful method for sequencing of peptides and proteins including discrimination of isobaric amino acid residues and site determination of phosphorylation. Additionally we also used new software for in silico elimination of MALDI matrix peaks from MALDI-ISD FTICR mass spectra. The combination of high resolving power of an FTICR analyzer and matrix subtraction software helps to interpret the low m/z region of MALDI-ISD spectra. Finally, several of these developed methods are applied in unison toward a MALDI ISD FTICR imaging experiment on mouse brain to achieve better results.


Assuntos
Análise de Fourier , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Fosforilação , Proteínas/química
19.
J Mass Spectrom ; 48(3): 352-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23494792

RESUMO

Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) is initiated by hydrogen transfer from matrix molecules to the carbonyl oxygen of peptide backbone with subsequent radical-induced cleavage leading to c'/z• fragments pair. MALDI-ISD is a very powerful method to obtain long sequence tags from proteins or to do de novo sequencing of peptides. Besides classical fragmentation, MALDI-ISD also shows specific fragments for which the mechanism of formation enlightened the MALDI-ISD process. In this study, the MALDI-ISD mechanism is reviewed, and a specific mechanism is studied in details: the N-terminal side of Cys residue (Xxx-Cys) is described to promote the generation of c' and w fragments in MALDI-ISD. Our data suggest that for sequences containing Xxx-Cys motifs, the N-Cα bond cleavage occurs following the hydrogen attachment to the thiol group of Cys side-chain. The c•/w fragments pair is formed by side-chain loss of the Cys residue with subsequent radical-induced cleavage at the N-Cα bond located at the left side (N-terminal direction) of the Cys residue. This fragmentation pathway preferentially occurs at free Cys residue and is suppressed when the cysteines are involved in disulfide bonds. Hydrogen attachment to alkylated Cys residues using iodoacetamide gives free Cys residue by the loss of •CH2CONH2 radical. The presence of alkylated Cys residue also suppress the formation of c•/w fragments pair via the (Cß)-centered radical, whereas w fragment is still observed as intense signal. In this case, the z• fragment formed by hydrogen attachment of carbonyl oxygen followed side-chain loss at alkylated Cys leads to a w fragment. Hydrogen attachment on peptide backbone and side-chain of Cys residue occurs therefore competitively during MALDI-ISD process.


Assuntos
Cisteína/química , Fragmentos de Peptídeos/química , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Alquilação , Sequência de Aminoácidos , Hidrogênio/química , Dados de Sequência Molecular , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
20.
J Phys Chem B ; 117(8): 2321-7, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23360482

RESUMO

The early mechanisms of matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) are described herein. MALDI-ISD is initiated by the hydrogen transfer from excited matrix molecules to the carbonyl oxygen of the peptide backbone, which is followed by a radical-induced cleavage, producing the c'/z• fragment pair. As expected, the use of 2,5-DHB or 1,5-DAN was efficient to induce MALDI-ISD, and the strongest intensity of MALDI-ISD fragments was observed when laser shots were performed on matrix crystals. In contrast, the hydrogen radical transfer reaction was suppressed by using ionic liquid and amorphous structure of 2,5-DHB and 1,5-DAN mixture as a matrix. Our results suggest that the hydrogen transfer occurs on the matrix crystal during the dissipation of the laser energy and before desorption, following ISD fragments formed in the MALDI plume.


Assuntos
Hidrogênio/química , Peptídeos/química , Raios Ultravioleta , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Calcitonina/química , Gentisatos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA