Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(2): 1406-1420, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38214909

RESUMO

Matrix metalloproteinase-7 (MMP-7) has been shown to play an important role in pathophysiological processes such as cancer and fibrosis. We previously discovered selective MMP-7 inhibitors by molecular hybridization and structure-based drug design. However, the systemic clearance (CLtot) of the biologically active lead compound was very high. Because our studies revealed that hepatic uptake by organic anion transporting polypeptide (OATP) was responsible for the high CLtot, we found a novel approach to reducing their uptake based on isoelectric point (IP) values as an indicator for substrate recognition by OATP1B1/1B3. Our "IP shift strategy" to adjust the IP values culminated in the discovery of TP0628103 (18), which is characterized by reduced in vitro OATP-mediated hepatic uptake and in vivo CLtot. Our in vitro-in vivo extrapolation of OATP-mediated clearance and the "IP shift strategy" provide crucial insights for a new medicinal chemistry approach to reducing the systemic clearance of OATP1B1/1B3 substrates.


Assuntos
Metaloproteinase 7 da Matriz , Transportadores de Ânions Orgânicos , Transportador 1 de Ânion Orgânico Específico do Fígado , Ponto Isoelétrico , Fígado , Interações Medicamentosas , Hepatócitos
2.
Anal Chem ; 93(7): 3370-3377, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33550808

RESUMO

Cyclic peptides (CPs) have attracted attention as next-generation drugs because they possess both cell-permeable potential as small molecules and specific affinity similar to antibodies. As intracellular molecules are important targets of CPs, quantitation of the intracellular retention and transmembrane permeability of CPs is necessary for drug development. However, permeated CPs within cells cannot be directly assessed by conventional permeability assays using methods such as artificial membranes and cell monolayers. Here, we propose a new approach using single-cell cytoplasm mass spectrometry (SCC-MS). After cells were incubated with CPs, the cytoplasm was directly collected from a single cell using a microneedle followed by nanoelectrospray ionization mass spectrometry detection of the CPs. The height of the CP peak was plotted against time and fitted with a simple function, y = a(1 - e-bx), to calculate the apparent permeability coefficient (Papp) for both the influx and efflux directions. MCF-7 cells were selected as model cancer cells and cultured with cyclosporin A (CsA) and its demethylated analogs (dmCsA-1, -2, and -3) as model CPs. Papp values (10-6 cm/s) obtained from cells incubated with 50 µM CPs ranged from 0.017 to 0.121 for influx and 0.20 to 1.48 for efflux. The higher efflux ratio was possibly caused by efflux transporters such as P-glycoprotein, a well-known receptor of CsA. The equilibrated intracellular concentration of CPs was estimated to be as low as 4.1-6.8 µM, which showed good consistency with the high efflux ratio. SCC-MS is promising as a reliable permeability assay for next-generation CP-based pharmaceuticals.


Assuntos
Peptídeos Cíclicos , Células CACO-2 , Permeabilidade da Membrana Celular , Citoplasma , Humanos , Espectrometria de Massas , Permeabilidade
3.
Bioorg Med Chem Lett ; 29(4): 654-658, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598349

RESUMO

The kisspeptin (Kp, Kp-54, metastin)/KISS1R system plays crucial roles in regulating the secretion of gonadotropin-releasing hormone. Continuous administration of nonapeptide Kp analogs caused plasma testosterone depletion, whereas bolus administration caused strong plasma testosterone elevation in male rats. To develop a new class of small peptide drugs, we focused on stepwise N-terminal truncation of Kp analogs and discovered potent pentapeptide analogs. Benzoyl-Phe-azaGly-Leu-Arg(Me)-Trp-NH2 (16) exhibited high agonist activity for KISS1R and excellent metabolic stability in rat serum. A single injection of a 4-pyridyl analog (19) at the N-terminus of 16 into male Sprague Dawley rats caused a robust increase in plasma luteinizing hormone levels, but unlike continuous administration of nonapeptide Kp analogs, continuous administration of 19 maintained moderate testosterone levels in rats. These results indicated that small peptide drugs can be successfully developed for treating sex hormone deficiency.


Assuntos
Gônadas/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Kisspeptinas/agonistas , Hipófise/efeitos dos fármacos , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
4.
Br J Pharmacol ; 175(2): 359-373, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29057457

RESUMO

BACKGROUND AND PURPOSE: Neuromedin U (NmU) may be a novel target for obesity treatment owing to its anorectic and energy expenditure enhancing effects. Although two receptors, NMU1 and NMU2, are both responsible for the NmU-mediated anti-obesity effects, the receptor agonist with the most appropriate profiles for treating obesity and diabetes in terms of efficacy and safety is as yet unknown. Thus, we developed and evaluated novel NMU1/2 receptor-selective agonists. EXPERIMENTAL APPROACH: Efficacy and safety were assessed in mice with diet-induced obesity (DIO) and those with leptin-deficient diabetes (ob/ob) through repeated peripheral administration of selective agonists to NMU1 (NMU-6102) and NMU2 (NMU-2084), along with non-selective NMU1/2 agonists (NMU-0002 and NMU-6014). We also performed immunohistochemistry for c-Fos protein expression in the brain to probe their mechanisms of action. KEY RESULTS: Although both non-selective NMU1/2 agonists and the NMU2-selective agonist had high efficacy compared with the NMU1-selective agonist, only the NMU2-selective agonist led to relatively low adverse effects, such as diarrhoea, in DIO mice. However, the non-selective NMU1/2 agonist and the NMU1-selective agonist, but not the NMU2-selective agonist, were effective in diabetic ob/ob mice. Mechanistically, NMU2-selective agonists preferentially activate pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus but not in the paraventricular nucleus. CONCLUSIONS AND IMPLICATIONS: These results suggest that an NMU2 receptor-selective agonist may be a well-balanced drug for the treatment of obesity and that an NMU1 receptor-selective agonist may also be beneficial for treating obesity and diabetes once its side effects are minimized.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Obesidade/tratamento farmacológico , Oligopeptídeos/efeitos adversos , Oligopeptídeos/uso terapêutico , Receptores de Neurotransmissores/agonistas , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Encéfalo/metabolismo , Masculino , Camundongos , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
5.
Bioorg Med Chem Lett ; 27(20): 4626-4629, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935264

RESUMO

Neuromedin U (NMU) mediates various physiological functions via NMUR1 and NMUR2 receptors. NMUR2 has been considered a promising treatment option for diabetes and obesity. Although NMU-8, a shorter peptide, has potent agonist activity for both receptors, it is metabolically unstable. Therefore, NMU-8 analogs modified with long-chain alkyl moieties via a linker were synthesized. An octadecanoyl analog (17) with amino acid substitutions [αMePhe19, Nle21, and Arg(Me)24] and a linker [Tra-γGlu-PEG(2)] dramatically increased NMUR2 selectivity, with retention of high agonist activity. Subcutaneous administration of 17 induced anorectic activity in C57BL/6J mice. Owing to its high metabolic stability, 17 would be useful in clarifying the physiological role and therapeutic application of NMU.


Assuntos
Depressores do Apetite/metabolismo , Peptídeos/metabolismo , Receptores de Neurotransmissores/metabolismo , Alquilação , Sequência de Aminoácidos , Animais , Depressores do Apetite/química , Depressores do Apetite/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/agonistas , Receptores de Neurotransmissores/antagonistas & inibidores , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 27(12): 2757-2761, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28457754

RESUMO

A structure-activity relationship study of a K-Ras(G12D) selective inhibitory cyclic peptide, KRpep-2d was performed. Alanine scanning of KRpep-2d focusing on the cyclic moiety showed that Leu7, Ile9, and Asp12 are the key elements for K-Ras(G12D) selective inhibition of KRpep-2d. The cysteine bridging was also examined to identify the stable analog of KRpep-2d under reductive conditions. As a result, the KRpep-2d analog (12) including mono-methylene bridging showed potent K-Ras(G12D) selective inhibition in both the presence and the absence of dithiothreitol. This means that mono-methylene bridging is an effective strategy to obtain a reduction-resistance analog of parent disulfide cyclic peptides. Peptide 12 inhibited proliferation of K-Ras(G12D)-driven cancer cells significantly. These results gave valuable information for further optimization of KRpep-2d to provide novel anti-cancer drug candidates targeting the K-Ras(G12D) mutant.


Assuntos
Alanina/farmacologia , Antineoplásicos/farmacologia , Cisteína/farmacologia , Peptídeos Cíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Alanina/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteína/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Mutação , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade
7.
Biochem Biophys Res Commun ; 483(1): 101-106, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28043792

RESUMO

Tropomyosin receptor kinase B (TrkB) is a known receptor of brain-derived neurotrophic factor (BDNF). Because it plays a critical role in the regulation of neuronal development, maturation, survival, etc., TrkB is a good target for drugs against central nervous system diseases. In this study, we aimed to generate peptidic TrkB agonists by applying random peptide phage display technology. After the phage panning against recombinant Fc-fused TrkB (TrkB-Fc), agonistic phages were directly screened against TrkB-expressing HEK293 cells. Through subsequent screening of the first-hit BM17 peptide-derived focus library, we successfully obtained the BM17d99 peptide, which had no sequence similarity with BDNF but had TrkB-binding capacity. We then synthesized a dimeric BM17d99 analog peptide that could phosphorylate or activate TrkB by facilitating receptor homodimerization. Treatment of TrkB-expressing HEK293 cells with the dimeric BM17d99 analog peptide significantly induced the phosphorylation of TrkB, suggesting that homodimerization of TrkB was enhanced by the dimeric peptide. This report demonstrates that our approach is useful for the generation of artificial peptidic agonists of cell surface receptors.


Assuntos
Glicoproteínas de Membrana/agonistas , Peptídeos/farmacologia , Sequência de Aminoácidos , Bacteriófago T7 , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Fosforilação , Ligação Proteica , Multimerização Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Receptor trkB
8.
Biochem Biophys Res Commun ; 483(1): 183-190, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28039053

RESUMO

Dedicator of cytokinesis 2 (DOCK2) is a key molecule for lymphocyte activation and migration. DOCK2 interacts with Ras-related C3 botulinus toxin substrate 1 (Rac1, GTPase) and mediates the GDP-GTP exchange reaction, indicating that inhibitors against protein-protein interaction (PPI) between DOCK2 and Rac1 would be good drug candidates for treating immune-related disorders. Here, we report DOCK2-selective PPI inhibitory peptides discovered using random peptide T7 phage display technology. These peptides inhibited DOCK2 activity at nanomolar concentrations and were delivered to intracellular compartments by combination with cell-penetrating peptide (CPP). Consequently, one peptide, R4-DCpep-2(V2W/K4R/ox)-NH2 (Ac-RRRRCWARYHGYPWCRRRR-NH2), inhibited migration in human B lymphocyte MINO cell line at IC50 = 120 nM. To our knowledge, this is the first report of a DOCK2-selective peptide inhibitor; this study will contribute to the development of novel DOCK2-targeting immunosuppressive drugs.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Linfoma de Células B/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sistema Livre de Células , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas Ativadoras de GTPase , Humanos , Linfoma de Células B/patologia , Biblioteca de Peptídeos , Peptídeos/metabolismo , Mapas de Interação de Proteínas , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Biochem Biophys Res Commun ; 480(1): 55-60, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27717820

RESUMO

Fibroblast growth factor receptor-1c (FGFR1c)/ßKlotho (KLB) complex is a receptor of fibroblast growth factor 21 (FGF21). Pharmacologically, FGF21 shows anti-obesity and anti-diabetic effects upon peripheral administration. Here, we report the development of an artificial peptide agonist to the FGFR1c/KLB heterodimer complex. The peptide, F91-8A07 (LPGRTCREYPDLWWVRCY), was discovered from random peptide T7 phage display and selectively bound to the FGFR1c/KLB complex, but not to FGFR1c and KLB individually. After subsequent peptide dimerization using a short polyethyleneglycol (PEG) linker, the dimeric F91-8A07 peptide showed higher potent agonist activity than that of FGF21 in cultured primary human adipocytes. Moreover, the dimeric peptide led to an expression of the early growth response protein-1 (Egr-1) mRNA in vivo, which is a target gene of FGFR1c. To the best of our knowledge, this is the first report of a FGFR1c/KLB complex-selective artificial peptide agonist.


Assuntos
Técnicas de Visualização da Superfície Celular , Proteínas de Membrana/agonistas , Peptídeos/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Adipócitos/efeitos dos fármacos , Animais , Bacteriófago T7 , Dimerização , Descoberta de Drogas , Fatores de Crescimento de Fibroblastos/química , Humanos , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/metabolismo , Biblioteca de Peptídeos , Peptídeos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
10.
J Med Chem ; 59(19): 8804-8811, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27589480

RESUMO

Metastin/kisspeptin is an endogenous ligand of KISS1 Receptor (KISS1R). Metastin and KISS1R are suggested to play crucial roles in regulating the secretion of gonadotropin-releasing hormone (GnRH), and continuous administration of metastin derivatives attenuated the plasma testosterone levels in male rats. Our optimization studies of metastin derivatives led to the discovery of 1 (Ac-d-Tyr-d-Trp-Asn-Thr-Phe-azaGly-Leu-Arg(Me)-Trp-NH2, TAK-683), which suppressed plasma testosterone in rats at lower doses than those of leuprolide. Although 1 possessed extremely potent pharmacological activity, 20 mg/mL aqueous solution of 1 has a gel formation property. In order to improve this physicochemical property, we substituted d-Trp at position 47 with a variety of amino acids; we identified that substitution with cyclic amino acids, which could change peptide conformation, retained its potency. Especially, analogue 24 (TAK-448) with trans-4-hydroxyproline (Hyp) at position 47 showed not only superior pharmacological activity to 1 but also excellent water solubility. Furthermore, 20 mg/mL aqueous solution of 24 did not show gel formation up to 5 days.


Assuntos
Kisspeptinas/química , Kisspeptinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Testosterona/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Humanos , Kisspeptinas/administração & dosagem , Kisspeptinas/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Solubilidade , Testosterona/sangue , Testosterona/metabolismo
11.
J Med Chem ; 57(14): 6105-15, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24918545

RESUMO

Modifications of metastin(45-54) produced peptide analogues with higher metabolic stability than metastin(45-54). N-terminally truncated nonapeptide 4 ([D-Tyr46,D-Pya(4)47,azaGly51,Arg(Me)53]metastin(46-54)) is a representative compound with both potent agonistic activity and metabolic stability. Although 4 had more potent testosterone-suppressant activity than metastin, it possessed physicochemical instability at pH 7 and insufficient in vivo activity. Instability at pH 7 was dependent upon Asn48 and Ser49; substitution of Ser49 with Thr49 reduced this instability and maintained KISS1 receptor agonistic activity. Furthermore, [D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54) (14) showed 2-fold greater [Ca2+]i-mobilizing activity than metastin(45-54) and an apparent increase in physicochemical stability. N-terminal acetylation of 14 resulted in the most potent analogue, 22 (Ac-[D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54)). With continuous administration, 22 possessed 10-50-fold more potent testosterone-suppressive activity in rats than 4. These results suggested that a controlled release of short-length KISS1 receptor agonists can suppress the hypothalamic-pituitary-gonadal axis and reduce testosterone levels. Compound 22 was selected for further preclinical evaluation for hormone-dependent diseases.


Assuntos
Kisspeptinas/farmacologia , Oligopeptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Testosterona/antagonistas & inibidores , Animais , Células CHO , Físico-Química , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Kisspeptinas/administração & dosagem , Kisspeptinas/química , Masculino , Conformação Molecular , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Ratos , Ratos Sprague-Dawley , Receptores de Kisspeptina-1 , Relação Estrutura-Atividade , Testosterona/metabolismo
12.
Neuroendocrinology ; 99(1): 49-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24356680

RESUMO

The hypothalamic peptide kisspeptin (metastin), the endogenous ligand of the G protein-coupled receptor KISS1R, plays a critical role in controlling GnRH release from hypothalamic GnRH neurons and thereby regulates hypothalamic-pituitary-gonadal functions. Although the therapeutic potential of kisspeptin is attractive, its susceptibility to proteolytic degradation limits its utility. To overcome this, KISS1R agonists or antagonists as peptide analogs or small molecules have been investigated. Kisspeptin analogs have been most extensively studied by reducing the length of the peptide from the original 54 amino acids to 10 amino acids or less and by substituting key amino acid residues. Also, 2 investigational kisspeptin agonist analogs have been evaluated in clinical studies in men; in agreement with animal studies, abrupt elevations in gonadotropin and testosterone levels were observed as an acute effect, followed by rapid reductions in these hormones as a chronic effect. Some studies of small-molecule KISS1R antagonists have also been published. In this review, we present a brief overview on kisspeptin/KISS1R physiology in reproductive functions and summarize the available knowledge of both agonists and antagonists. We also focus on the kisspeptin agonist analogs by summarizing key pharmacological findings from both clinical and preclinical studies, and discuss their potential therapeutic utility.


Assuntos
Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Kisspeptinas/farmacologia , Kisspeptinas/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hormônio Luteinizante/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Kisspeptina-1 , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Testosterona/sangue
13.
J Med Chem ; 56(21): 8298-307, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24047141

RESUMO

Metastin/kisspeptin is a 54 amino acid peptide ligand of the KISS1R receptor and is a critical regulator of GnRH secretion. The N-terminally truncated peptide, metastin(45-54), possesses a 10-fold higher receptor-binding affinity than full-length metastin and agonistic KISS1R activity but is rapidly inactivated in rodent plasma. We have developed a decapeptide analog [D-Tyr(45),D-Trp(47),azaGly(51),Arg(Me)(53)]metastin(45-54) with improved serum stability compared with metastin(45-54) but with decreased KISS1R agonistic activity. Amino acid replacements at positions 45-47 led to an enhancement of KISS1R agonistic activity and metabolic stability. N-terminal truncation resulted in a stable nonapeptide, [D-Tyr(46),D-Pya(4)(47),azaGly(51),Arg(Me)(53)]metastin(46-54), compound 26, which displayed KISS1R binding affinities comparable to metastin(45-54) and had improved serum stability. Compound 26 reduced plasma testosterone in male rats and is the first short-length metastin analog to possess testosterone suppressive activities. Compound 26 has led to the elucidation of investigational analogs TAK-683 and TAK-448, both of which have undergone clinical evaluation for hormone-dependent diseases such as prostate cancer.


Assuntos
Desenho de Fármacos , Kisspeptinas/síntese química , Kisspeptinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Testosterona/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Drogas em Investigação/síntese química , Drogas em Investigação/química , Drogas em Investigação/farmacologia , Humanos , Kisspeptinas/sangue , Masculino , Camundongos , Conformação Molecular , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Relação Estrutura-Atividade , Testosterona/sangue
14.
Endocrinology ; 153(11): 5297-308, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23027808

RESUMO

Metastin/kisspeptin, a hypothalamic peptide, plays a pivotal role in controlling GnRH neurons. Here we studied the effect of chronic sc administration of two kisspeptin analogs, KISS1-305 and TAK-448, on hypothalamic-pituitary-gonadal function in male rats in comparison with a GnRH analogue leuprolide or bilateral orchiectomy (ORX). The prototype polypeptide, KISS1-305 (1-4 nmol/h), caused substantial elevations of plasma LH and testosterone, followed by abrupt reductions of both hormone levels. Notably, testosterone levels were reduced to castrate levels within 3 d and remained depleted throughout the 4-wk dosing period, an effect that was faster and more pronounced than leuprolide (1 nmol/h) dosing. KISS1-305 also reduced genital organ weight more profoundly than leuprolide. In mechanistic studies, chronic KISS1-305 administration only transiently induced c-Fos expression in GnRH neurons, suggesting that GnRH-neural response was attenuated over time. Hypothalamic GnRH content was reduced to 10-20% of control at 3 wk without any changes in Gnrh mRNA expression. Dosing with the investigational peptide TAK-448 was also studied to extend our understanding of hypothalamic-pituitary functions. Similar to ORX, TAK-448 (0.1 nmol/h) depleted testosterone and decreased GnRH content by 4 wk. However, in contrast to ORX, TAK-448 decreased gonadotropin levels in pituitary and plasma samples, implying the suppression of GnRH pulses. These results suggest that chronic administration of kisspeptin analogs disrupts endogenous kisspeptin signals to suppress intrinsic GnRH pulses, perhaps by attenuating GnRH-neural response and inducing continuous GnRH leakage from the hypothalamus. The potential utility of kisspeptin analogs as novel agents to treat hormone-related diseases, including prostate cancer, is discussed.


Assuntos
Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Kisspeptinas/farmacologia , Neurônios/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/sangue , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Leuprolida/farmacologia , Hormônio Luteinizante/sangue , Masculino , Neurônios/metabolismo , Orquiectomia , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Ratos , Ratos Sprague-Dawley , Testículo/metabolismo
15.
Bioorg Med Chem Lett ; 22(20): 6328-32, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22995619

RESUMO

Metastin/kisspeptin is an amidated peptide with 54 amino acid residues isolated from human placental tissues as a ligand of the orphan G-protein-coupled receptor KISS1R that is expressed throughout the central nervous system and in a variety of endocrine and gonadal tissues. Compared to the full-length metastin protein, the N-terminal truncated peptide metastin(45-54) has 3-10 times higher receptor affinity and enhanced ability to increase intracellular calcium concentration which is essential for activation of protein kinases involved in intracellular signaling in a number of pathways that affect reproduction and cell migration. However, metastin(45-54) is rapidly inactivated in serum. In this study, we designed and synthesized a number of metastin(45-54) analogs and evaluated their agonistic activity and trypsin resistance. Among analogs with substitutions of arginine at position 53, N(ω)(-)methylarginine analog 8 showed 3-fold more potent agonistic activity compared with metastin(45-54). Furthermore, analog 8 was shown to resist trypsin cleavage between positions 53 and 54. This substitution may be useful in the development of other Arg-containing peptides for which the avoidance of cleavage is desired.


Assuntos
Arginina/análogos & derivados , Kisspeptinas/química , Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Tripsina/metabolismo , Sequência de Aminoácidos , Humanos , Kisspeptinas/farmacologia , Receptores de Kisspeptina-1
16.
Bioorg Med Chem Lett ; 22(20): 6391-6, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22975302

RESUMO

Metastin/kisspeptin, a 54-amino acid peptide, is the ligand of the G-protein-coupled receptor KISS1R which plays a key role in pathways that regulate reproduction and cell migration in many endocrine and gonadal tissues. The N-terminally truncated decapeptide, metastin(45-54), has 3-10 times higher receptor affinity and intracellular calcium ion-mobilizing activity but is rapidly inactivated in serum. In this study we designed and synthesized stable KISS1R agonistic decapeptide analogs with selected substitutions at positions 47, 50, and 51. Replacement of glycine with azaglycine (azaGly) in which the α-carbon is replaced with a nitrogen atom at position 51 improved the stability of amide bonds between Phe(50)-Gly(51) and Gly(51)-Leu(52) as determined by in vitro mouse serum stability studies. Substitution for tryptophan at position 47 with other amino acids such as serine, threonine, ß-(3-pyridyl)alanine, and D-tryptophan (D-Trp), produced analogs that were highly stable in mouse serum. D-Trp(47) analog 13 showed not only high metabolic stability but also excellent KISS1R agonistic activity. Other labile peptides may have increased serum stability using amino acid substitution.


Assuntos
Kisspeptinas/sangue , Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Alanina/análogos & derivados , Alanina/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Glicina/análogos & derivados , Humanos , Kisspeptinas/química , Kisspeptinas/farmacologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Soro/metabolismo , Triptofano/química
17.
J Pharm Biomed Anal ; 70: 369-77, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22748666

RESUMO

TAK-448 and TAK-683, investigational agents with potential utility in the treatment of prostate cancer, are potent low molecular weight metastin receptor agonists consisting of nine amino acids. Monoclonal antibodies (mAbs) against these agents were developed to facilitate their evaluation in preclinical studies. Six mAbs were obtained from four immunogens. Three mAbs recognized the C-terminal of TAK-683 and TAK-448, two recognized the N-terminal of TAK-683, and one recognized the N-terminal of TAK-448. Using various combinations of these six mAbs, sandwich ELISAs for TAK-448 and TAK-683 were developed. These assays were highly sensitive, specific, and accurate. The detection limit for TAK-448 and TAK-683 was 3 and 5 pg/mL, respectively, and there was no interference from rat plasma, rat metastin, or analogs of TAK-448/TAK-683. Recovery achieved ≤±10% with intra-/inter-day assay precision coefficient of variation <10%. The assay demonstrated high stability and sample pre-treatment was not required. Each assay detected the dose-dependent concentration of TAK-448 and TAK-683 in blood 24h after a single intravenous administration of 0.1 and 1mg/kg doses. In conclusion, sensitive sandwich ELISAs were developed to detect the small peptides TAK-448 and TAK-683. The novel assays reliably quantified these nonapeptides in rat plasma, and thus will be useful for preclinical studies of these agents. This methodology may be applicable to the development of similar assays for other short peptides.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Ensaio de Imunoadsorção Enzimática , Kisspeptinas/administração & dosagem , Kisspeptinas/sangue , Receptores Acoplados a Proteínas G/agonistas , Animais , Anticorpos Monoclonais , Especificidade de Anticorpos , Antineoplásicos/imunologia , Calibragem , Ensaio de Imunoadsorção Enzimática/normas , Feminino , Injeções Intravenosas , Kisspeptinas/imunologia , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Kisspeptina-1 , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
J Biol Chem ; 277(37): 34010-6, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12118011

RESUMO

We isolated a novel gene in a search of the Celera data base and found that it encoded a peptidic ligand for a G protein-coupled receptor, GPR7 (O'Dowd, B. F., Scheideler, M. A., Nguyen, T., Cheng, R., Rasmussen, J. S., Marchese, A., Zastawny, R., Heng, H. H., Tsui, L. C., Shi, X., Asa, S., Puy, L., and George, S. R. (1995) Genomics 28, 84-91; Lee, D. K., Nguyen, T., Porter, C. A., Cheng, R., George, S. R., and O'Dowd, B. F. (1999) Mol. Brain Res. 71, 96-103). The expression of this gene was detected in various tissues in rats, including the lymphoid organs, central nervous system, mammary glands, and uterus. GPR7 mRNA was mainly detected in the central nervous system and uterus. In situ hybridization showed that the gene encoding the GPR7 ligand was expressed in the hypothalamus and hippocampus of rats. To determine the molecular structure of the endogenous GPR7 ligand, we purified it from bovine hypothalamic tissue extracts on the basis of cAMP production-inhibitory activity to cells expressing GPR7. Through structural analyses, we found that the purified endogenous ligand was a peptide with 29 amino acid residues and that it was uniquely modified with bromine. We subsequently determined that the C-6 position of the indole moiety in the N-terminal Trp was brominated. We believe this is the first report on a neuropeptide modified with bromine and have hence named it neuropeptide B. In in vitro assays, bromination did not influence the binding of neuropeptide B to the receptor.


Assuntos
Neuropeptídeos/análise , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Bromo , Células CHO , Bovinos , Clonagem Molecular , Cricetinae , AMP Cíclico/biossíntese , Ligantes , Dados de Sequência Molecular , Neuropeptídeos/química , Neuropeptídeos/metabolismo , RNA Mensageiro/análise , Ratos , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos/química
19.
J Biol Chem ; 277(39): 35826-32, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12130646

RESUMO

The structurally related orphan G-protein-coupled receptors GPR7 and GPR8 are expressed in the central nervous system, and their ligands have not been identified. Here, we report the identification of the endogenous ligand for both of these receptors. We purified the peptide ligand from porcine hypothalamus using stable Chinese hamster ovary cell lines expressing human GPR8 and cloned the cDNA encoding its precursor protein. The cDNA encodes two forms of the peptide ligand with lengths of 23 and 30 amino acid residues as mature peptides. We designated the two ligands neuropeptide W-23 (NPW23) and neuropeptide W-30 (NPW30). The amino acid sequence of NPW23 is completely identical to that of the N-terminal 23 residues of NPW30. Synthetic NPW23 and NPW30 activated and bound to both GPR7 and GPR8 at similar effective doses. Intracerebroventricular administration of NPW23 in rats increased food intake and stimulated prolactin release. These findings indicate that neuropeptide W is the endogenous ligand for both GPR7 and GPR8 and acts as a mediator of the central control of feeding and the neuroendocrine system.


Assuntos
Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/isolamento & purificação , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Cricetinae , AMP Cíclico/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Biblioteca Gênica , Humanos , Hipotálamo/metabolismo , Concentração Inibidora 50 , Ligantes , Masculino , Dados de Sequência Molecular , Peptídeos/química , Toxina Pertussis/farmacologia , Reação em Cadeia da Polimerase , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Homologia de Sequência de Aminoácidos , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA