Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Pharmacol Sci ; 154(3): 139-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395514

RESUMO

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a G protein-coupled receptor that binds to Gαs, Gαi, and Gαq proteins to regulate various downstream signaling molecules, such as protein kinase A (PKA), phosphatidylinositol 3-kinase (PI3K), and phospholipase C. In this study, we examined the role of VIPR2 in cell cycle progression. KS-133, a newly developed VIPR2-selective antagonist peptide, attenuated VIP-induced cell proliferation in MCF-7 cells. The percentage of cells in the S-M phase was decreased in MCF-7 cells treated with KS-133. KS-133 in the presence of VIP decreased the phosphorylation of extracellular signal-regulated kinase (ERK), AKT, and glycogen synthase kinase-3ß (GSK3ß), resulting in a decrease in cyclin D1 levels. In MCF-7 cells stably-expressing VIPR2, KS-133 decreased PI3K activity and cAMP levels. Treatment with the ERK-specific kinase (MEK) inhibitor U0126 and the class I PI3K inhibitor ZSTK474 decreased the percentage of cells in the S phase. KS-133 reduced the percentage of cells in the S phase more than treatment with U0126 or ZSTK474 alone and did not affect the effect of the mixture of these inhibitors. Our findings suggest that VIPR2 signaling regulates cyclin D1 levels through the cAMP/PKA/ERK and PI3K/AKT/GSK3ß pathways, and mediates the G1/S transition to control cell proliferation.


Assuntos
Butadienos , Ciclina D1 , Nitrilas , Peptídeos Cíclicos , Proteínas Proto-Oncogênicas c-akt , Humanos , Ciclina D1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células MCF-7 , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta , Divisão Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proliferação de Células , Fosfatidilinositol 3-Quinase
2.
Nihon Yakurigaku Zasshi ; 158(3): 242-245, 2023 May 01.
Artigo em Japonês | MEDLINE | ID: mdl-36990792

RESUMO

Schizophrenia affects approximately 24 million people worldwide. Existing medications for the treatment of schizophrenia work primarily by improving positive symptoms such as agitation, hallucinations, delusions, and aggression. They possess common mechanism of action (MOA), blocking to neurotransmitter receptors such as dopamine, serotonin, and adrenaline receptors. Although multiple agents are available for the treatment of schizophrenia, the majority do not address negative symptoms or cognitive dysfunction. In other cases, patients have drug-related adverse effects. The vasoactive intestinal peptide receptor 2 (VIPR2, also known as VPAC2 receptor) might be an attractive drug target for the treatment of schizophrenia because both clinical and preclinical studies have demonstrated a strong link between high expression/overactivation of VIPR2 and schizophrenia. Despite these backgrounds, the proof-of-concept of VIPR2 inhibitors has not been examined clinically. A reason might be that VIPR2 belongs to class-B GPCRs, and the discovery of small-molecule drugs against class-B GPCRs is generally difficult. We have developed a bicyclic peptide KS-133, which shows VIPR2 antagonist activity and suppresses cognitive decline in a mouse model relevant to schizophrenia. KS-133 has a different MOA from current therapeutic drugs and exhibits high selectivity for VIPR2 and potent inhibitory activity against a single-target molecule. Therefore, it may contribute to both the development of a novel drug candidate for the treatment of psychiatric disorders such as schizophrenia and acceleration of basic studies on VIPR2.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo , Esquizofrenia , Camundongos , Animais , Esquizofrenia/tratamento farmacológico , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/uso terapêutico
3.
Peptides ; 161: 170940, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36603770

RESUMO

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a class B G protein-coupled receptor with the neuropeptide VIP as a ligand. Increased VIPR2 mRNA expression and/or VIPR2 gene copy number has been documented in several cancers including breast carcinoma. However, the pathophysiological role of increased VIPR2 in the proliferation of breast cancer cells remains largely unknown. In this study, we found that VIPR2 overexpression in MCF-7 and MDA-MB-231 cells, human breast cancer cell lines, promoted cell proliferation. Increased VIPR2 also exacerbated intraperitoneal proliferation of breast cancer MDA-MB-231 cells in a tumor nude mouse model in vivo. Treatment with KS-133, a VIPR2-selective antagonist peptide, significantly inhibited VIP-induced cell proliferation in VIPR2-overexpressing MCF-7 and MDA-MB-231 cells. Overexpressed VIPR2 caused increases in the levels of cAMP and phosphorylated extracellular signal-regulated kinase (ERK), which involves a VIPR2 signaling pathway through Gs protein. Additionally, phosphorylation of vasodilator-stimulated phosphoprotein (Ser157) and cAMP response element binding protein (Ser133) in VIPR2-overexpressing MCF-7 cells was greater than that in control cells, suggesting the increased PKA activity. Moreover, an inhibitor of mitogen-activated protein kinase kinase, U0126, attenuated tumor proliferation in exogenous VIPR2-expressing MCF-7 and MDA-MB-231 cells at the same level as observed in EGFP-expressing cells treated with U0126. Together, these findings suggest that VIPR2 controls breast tumor growth by regulating the cAMP/PKA/ERK signaling pathway, and the excessive expression of VIPR2 may lead to an exacerbation of breast carcinoma.


Assuntos
Neoplasias da Mama , MAP Quinases Reguladas por Sinal Extracelular , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
4.
Biochem Biophys Res Commun ; 636(Pt 1): 10-16, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332470

RESUMO

The vasoactive intestinal peptide receptor 2 (VIPR2) has attracted attention as a drug target for the treatment of mental disorders, cancer, and immune diseases. In 2021, we identified the peptide KS-133 as a VIPR2-selective antagonist. In this study, we aimed to elucidate the binding mechanism between VIPR2 and KS-133. To this end, VIPR2/KS-133 and VIPR2/vasoactive intestinal peptide (VIP) complex models were constructed through AlphaFold version 2.0 and molecular dynamic simulations. Our models revealed that: (i) both KS-133 and VIP have helical structures, (ii) the interaction residues on VIPR2 for both peptides are similar, and (iii) the orientation of their helices upon their binding to VIPR2 are different by ∼45°. Interestingly, in the process of constructing the aforementioned models, an S-S bond formation between Cys25 and Cys192 of the human VIPR2 was identified. Although these two Cys residues are highly conserved among species (i.e., corresponding to Cys24 and Cys191 in the mouse), no previous reports regarding this S-S bond formation exist. In order to clarify the potential role of this S-S bond in the VIPR2 has functional consequences, a cell line expressing the mouse VIPR2(Cys24Ala, Cys191Ala) was generated. During the VIP stimulation of this cell line, the phosphorylation of AKT (a downstream signal marker of VIPR2) was found to be significantly attenuated, thereby suggesting that the S-S bond has a functional significance for VIPR2. Our study not only elucidates the VIPR2-binding mechanism of KS-133 for the first time, but also provides new insights into the structural biology of VIPR2.


Assuntos
Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores de Peptídeo Intestinal Vasoativo , Humanos , Camundongos , Animais , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Linhagem Celular
5.
Front Oncol ; 12: 852358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237322

RESUMO

Phosphoinositide metabolism is critically involved in human cancer cell migration and metastatic growth. The formation of lamellipodia at the leading edge of migrating cells is regulated by metabolism of the inositol phospholipid PI(4,5)P2 into PI(3,4,5)P3. The synthesized PI(3,4,5)P3 promotes the translocation of WASP family verprolin homologous protein 2 (WAVE2) to the plasma membrane and regulates guanine nucleotide exchange factor Rac-mediated actin filament remodeling. Here, we investigated if VIPR2, a receptor for vasoactive intestinal peptide (VIP), has a potential role in regulating cell migration via this pathway. We found that silencing of VIPR2 in MDA-MB-231 and MCF-7 human breast cancer cells inhibited VIP-induced cell migration. In contrast, stable expression of exogenous VIPR2 promoted VIP-induced tumor cell migration, an effect that was inhibited by the addition of a PI3-kinase (PI3K)γ inhibitor or a VIPR2-selective antagonist. VIPR2 stably-expressing cells exhibited increased PI3K activity. Membrane localization of PI(3,4,5)P3 was significantly attenuated by VIPR2-silencing. VIPR2-silencing in MDA-MB-231 cells suppressed lamellipodium extension; in VIPR2-overexpressing cells, VIPR2 accumulated in the cell membrane on lamellipodia and co-localized with WAVE2. Conversely, VIPR2-silencing reduced WAVE2 level on the cell membrane and inhibited the interaction between WAVE2, actin-related protein 3, and actin. These findings suggest that VIP-VIPR2 signaling controls cancer migration by regulating WAVE2-mediated actin nucleation and elongation for lamellipodium formation through the synthesis of PI(3,4,5)P3.

6.
Biochem Biophys Res Commun ; 634: 92-99, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36240654

RESUMO

Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobe involved in the pathogenesis of chronic periodontitis, including local inflammation of the oral cavity. However, periodontal disease has recently been identified as a significant factor in the pathogenesis of neural diseases, including Alzheimer's disease. A virulence factor, P. gingivalis-lipopolysaccharide (LPS-PG), is involved in pro-inflammatory responses, not only in peripheral tissues but also in the brain. In this study, we examined whether P. gingivalis-induced brain inflammation could be ameliorated by pharmacotherapy, using in vivo and in vitro studies. In an animal experiment, peripheral administration of LPS-PG induced inflammation in the hippocampus via microglial activation, which was inhibited by pre-treatment with the antidepressant imipramine. Similarly, LPS-PG-induced inflammation in MG-6 cells, a mouse microglial cell line, was inhibited by pre-treatment with imipramine, which caused imipramine-induced inhibition of NF-κB signaling. Culture media obtained from LPS-PG-treated MG-6 cells induced neuronal cell death in Neuro-2A cells, a mouse neuroblastoma cell line, which was prevented by pre-treatment of MG-6 cells with imipramine. These results indicate that imipramine inhibits LPS-PG-induced inflammatory responses in microglia and ameliorates periodontal disease-related neural damage.


Assuntos
Doenças Periodontais , Porphyromonas gingivalis , Camundongos , Animais , Porphyromonas gingivalis/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Imipramina/farmacologia , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Inflamação/metabolismo
7.
Eur J Pharmacol ; 933: 175273, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108738

RESUMO

Cisplatin is one of the most widely used chemotherapeutic agents and induces caspase-9-mediated apoptosis. Here, we examined whether phospholipase C-related catalytically inactive protein (PRIP) enhances cisplatin-induced apoptosis of breast cancer cells. PRIP depletion increased expression of X-linked inhibitor of apoptosis protein (XIAP) by inhibiting protein degradation, which is downstream of the phosphatidylinositol 3-kinase/AKT pathway and inhibits apoptotic signaling by blocking caspase-9 activation. Conversely, the viability of MCF-7 cells transfected with Prip1 was significantly lower than that of control cells in the presence of cisplatin. The number of apoptotic nuclei and expression levels of cleaved caspase-9 and downstream cleaved caspase-7 and poly-ADP ribose polymerase were greater in PRIP1-expressing MCF-7 cells treated with cisplatin than in control cells. XIAP was decreased by expression of pleckstrin homology domain of PRIP1 (PRIP1-PH domain) that blocked phosphatidylinositol 4,5 bisphosphate metabolism. In an orthotopic transplantation model, combined administration of PRIP1-PH domain-containing liposomes and cisplatin reduced the size of MCF-7 tumors compared with cisplatin alone. Our findings demonstrate that PRIP promotes XIAP degradation by inhibiting PI(3,4,5)P3/AKT signaling and enhances cisplatin-induced apoptotic cell death. Therefore, we propose that PRIP1-PH liposomes are a novel agent to avoid cisplatin resistance.


Assuntos
Cisplatino , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Adenosina Difosfato Ribose , Apoptose , Caspase 7/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Lipossomos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfolipases Tipo C/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
8.
Int Heart J ; 63(5): 984-988, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36104230

RESUMO

Long-term complications after the Fontan procedure are important concerns for patients with pediatric and adult congenital heart disease. Although thrombocytopenia due to portal hypertension and hypersplenism is a well-known complication of the Fontan circulation, few studies have reported on its management. Herein we describe a young adult Fontan patient with thrombocytopenia and a splenic artery aneurysm caused by conduit stenosis. The patient required conduit replacement due to high venous pressure. We performed partial splenic artery embolization (PSE) and embolization of the aneurysm preoperatively to reduce the risk of bleeding, resulting in successful subsequent cardiac surgery. Preoperative evaluation of the splenic artery aneurysm was informative, and PSE was a safe and effective treatment option for thrombocytopenia to avoid bleeding during open-heart surgery in this patient.


Assuntos
Aneurisma , Embolização Terapêutica , Técnica de Fontan , Cardiopatias Congênitas , Trombocitopenia , Adulto , Criança , Embolização Terapêutica/efeitos adversos , Técnica de Fontan/efeitos adversos , Cardiopatias Congênitas/complicações , Humanos , Artéria Esplênica/cirurgia , Trombocitopenia/etiologia , Adulto Jovem
9.
Shokuhin Eiseigaku Zasshi ; 63(1): 34-42, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35264520

RESUMO

Assessment of carcinogenicity is important for human health at dietary risk assessment of pesticide residues. This article indicated important points on interpretation of carcinogenicity in toxicological evaluation of pesticide residues based on principles of risk analysis in foods by CODEX to be a guide for risk assessors. This guidance was referred from the guidance on carcinogenicity evaluation by international and/or national organizations, and the interpretations of Food Safety Commissions of Japan (FSCJ) published in their risk assessment reports. We focused on carcinogenicity obtained from routine carcinogenicity bioassays in rodents. The guidance includes the purpose and usefulness of the bioassay studies, consideration points to be carcinogenicity and influencing factors to carcinogenicity in the test to judge carcinogenic hazard at hazard identification. Considering on human relevance as carcinogenic hazard also was proposed using practical case examples. Next, a carcinogenic hazard is evaluated on dose-response relationship to judge points of departure on carcinogenicity. At the end of this article, we challenged our recommendation on future assessment of carcinogenicity to progress from hazard to risk.


Assuntos
Testes de Carcinogenicidade , Carcinógenos , Resíduos de Praguicidas/toxicidade , Roedores , Animais , Bioensaio , Carcinógenos/toxicidade , Medição de Risco
10.
Front Pharmacol ; 12: 751587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819858

RESUMO

Worldwide, more than 20 million people suffer from schizophrenia, but effective and definitive new therapeutic drugs/treatments have not been established. Vasoactive intestinal peptide receptor 2 (VIPR2) might be an attractive drug target for the treatment of schizophrenia because both preclinical and clinical studies have demonstrated a strong link between high expression/overactivation of VIPR2 and schizophrenia. Nevertheless, VIPR2-targeting drugs are not yet available. VIPR2 is a class-B G protein-coupled receptor that possesses high structural homology to its subtypes, vasoactive intestinal peptide receptor 1 (VIPR1) and pituitary adenylate cyclase-activating polypeptide type-1 receptor (PAC1). These biological and structural properties have made it difficult to discover small molecule drugs against VIPR2. In 2018, cyclic peptide VIpep-3, a VIPR2-selective antagonist, was reported. The aim of this study was to generate a VIpep-3 derivative for in vivo experiments. After amino acid substitution and structure optimization, we successfully generated KS-133 with 1) a VIPR2-selective and potent antagonistic activity, 2) at least 24 h of stability in plasma, and 3) in vivo pharmacological efficacies in a mouse model of psychiatric disorders through early postnatal activation of VIPR2. To the best of our knowledge, this is the first report of a VIPR2-selective antagonistic peptide that counteracts cognitive decline, a central feature of schizophrenia. KS-133 may contribute to studies and development of novel schizophrenia therapeutic drugs that target VIPR2.

11.
Front Neurosci ; 15: 717490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366784

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) is a multifunctional neuropeptide involved in brain development and synaptic plasticity. With respect to PACAP function, most attention has been given to that mediated by its specific receptor PAC1 (ADCYAP1R1). However, PACAP also binds tightly to the high affinity receptors for vasoactive intestinal peptide (VIP, VIP), called VPAC1 and VPAC2 (VIPR1 and VIPR2, respectively). Depending on innervation patterns, PACAP can thus interact physiologically with any of these receptors. VPAC2 receptors, the focus of this review, are known to have a pivotal role in regulating circadian rhythms and to affect multiple other processes in the brain, including those involved in fear cognition. Accumulating evidence in human genetics indicates that microduplications at 7q36.3, containing VIPR2 gene, are linked to schizophrenia and possibly autism spectrum disorder. Although detailed molecular mechanisms have not been fully elucidated, recent studies in animal models suggest that overactivation of the VPAC2 receptor disrupts cortical circuit maturation. The VIPR2 linkage can thus be potentially explained by inappropriate control of receptor signaling at a time when neural circuits involved in cognition and social behavior are being established. Alternatively, or in addition, VPAC2 receptor overactivity may disrupt ongoing synaptic plasticity during processes of learning and memory. Finally, in vitro data indicate that PACAP and VIP have differential activities on the maturation of neurons via their distinct signaling pathways. Thus perturbations in the balance of VPAC2, VPAC1, and PAC1 receptors and their ligands may have important consequences in brain development and plasticity.

12.
Regul Toxicol Pharmacol ; 124: 104958, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33991633

RESUMO

The nonlinearity of internal exposure to 8 pesticides was investigated in toxicity studies using kinetics to identify nonlinearity visually and to investigate the influence of nonlinearity on toxicological evaluation. Data were obtained from risk assessment reports published by the Food Safety Commission (FSCJ). Nonlinearity was defined using 2 indicators: the lowest visual inflection point (LVIP) and the second lowest visual inflection point (SVIP) of kinetics by drawing a linear distribution chart. The area under the curve and 24-h urine concentrations were stable parameters used to identify the LVIP/SVIP. The sampling timing affected the blood concentrations, and the LVIP/SVIP was detected for 6 pesticides using the parent compounds or their metabolites as analytes. The subproportional nonlinearity was significant for these pesticides. The LVIP/SVIP values were consistent in the same species up to a 1-year period, but the values showed species-specific differences in several compounds. In all compounds found to be nonlinear, apical outcomes were observed at the SVIP or above. The presence of nonlinearity was recognized by the FSCJ. The recognition influenced their judgment of no-observed-adverse-effect levels (NOAELs) for carcinogenicity or health-based guidance values, indicating the importance of appropriate kinetics to identify the nonlinearity for toxicological evaluation of pesticide residue.


Assuntos
Resíduos de Praguicidas/toxicidade , Testes de Toxicidade/normas , Animais , Carcinogênese/induzido quimicamente , Interpretação Estatística de Dados , Cães , Análise de Perigos e Pontos Críticos de Controle/métodos , Japão , Camundongos , Nível de Efeito Adverso não Observado , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/farmacocinética , Resíduos de Praguicidas/normas , Coelhos , Ratos , Especificidade da Espécie , Testes de Toxicidade/estatística & dados numéricos , Toxicocinética
13.
Biochem Biophys Res Commun ; 552: 106-113, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33743346

RESUMO

Cancer is characterized by uncontrolled proliferation resulting from aberrant cell cycle progression. The activation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling, a regulatory pathway for the cell cycle, stabilizes cyclin D1 in the G1 phase by inhibiting the activity of glycogen synthase kinase 3ß (GSK3ß) via phosphorylation. We previously reported that phospholipase C-related catalytically inactive protein (PRIP), a phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] binding protein, regulates PI3K/AKT signaling by competitively inhibiting substrate recognition by PI3K. Therefore, in this study, we investigated whether PRIP is involved in cell cycle progression. PRIP silencing in MCF-7 cells, a human breast cancer cell line, demonstrated PI(3,4,5)P3 signals accumulated at the cell periphery compared to that of the control. This suggests that PRIP reduction enhances PI(3,4,5)P3-mediated signaling. Consistently, PRIP silencing in MCF-7 cells exhibited increased phosphorylation of AKT and GSK3ß which resulted in cyclin D1 accumulation. In contrast, the exogenous expression of PRIP in MCF-7 cells evidenced stronger downregulation of AKT and GSK3ß phosphorylation, reduced accumulation of cyclin D1, and diminished cell proliferation in comparison to control cells. Flow cytometry analysis indicated that MCF-7 cells stably expressing PRIP attenuate cell cycle progression. Importantly, tumor growth of MCF-7 cells stably expressing PRIP was considerably prevented in an in vivo xenograft mouse model. In conclusion, PRIP expression downregulates PI3K/AKT/GSK3ß-mediated cell cycle progression and suppresses tumor growth. Therefore, we propose that PRIP is a new therapeutic target for anticancer therapy.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositóis/sangue , Fosfatidilinositóis/metabolismo , Transdução de Sinais , Transplante Heterólogo , Carga Tumoral/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-33478122

RESUMO

In Japan, population health with life expectancy (LE) and healthy life expectancy (HALE) as indicators varies across the 47 prefectures (administrative regions). This study investigates how health examination results, including attitude toward improving life habits, are associated with population health. The association between health checkup variables and summary population health outcomes (i.e., life expectancy and healthy life expectancy) was investigated using a cross-sectional ecological design with prefectures as the unit of analysis. The medical records, aggregated by prefecture, gender, and age in the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB) Open Data Japan, were used as health checkup variables. Body weight, blood pressure, liver enzymes, drinking habits, smoking habits, diabetes, serum lipids, and answers to questions regarding attitude toward improving health habits were significantly correlated to population health outcomes. Multiple regression analysis also revealed significant influence of these variables on population health. This study highlights that health examination results, including attitude toward improving health habits, are positively associated with population health. Consequently, implementing measures to improve health habits in response to the examination results could help the population maintain a healthy life.


Assuntos
Expectativa de Vida , Saúde da População , Estudos Transversais , Bases de Dados Factuais , Japão/epidemiologia
15.
Front Neurosci ; 14: 521, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581681

RESUMO

Clinical studies have shown that microduplications at 7q36.3, containing VIPR2, confer significant risk for schizophrenia and autism spectrum disorder (ASD). VIPR2 gene encodes the VPAC2 receptor for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Lymphocytes from patients with these mutations exhibited higher VIPR2 gene expression and VIP-induced cAMP responsiveness, but mechanisms by which overactive VPAC2 signaling may lead to these psychiatric disorders are unknown. We have previously found that repeated administration of a selective VPAC2 receptor agonist Ro25-1553 in the mouse during early postnatal development caused synaptic alterations in the prefrontal cortex and sensorimotor gating deficits. In this study, we aimed to clarify the effects of VPAC2 receptor activation on neurite outgrowth in cultured primary mouse cortical neurons. Ro25-1553 and VIP caused reductions in total numbers and lengths of both neuronal dendrites and axons, while PACAP38 facilitated elongation of dendrites, but not axons. These effects of Ro25-1553 and VIP were blocked by a VPAC2 receptor antagonist PG99-465 and abolished in VPAC2 receptor-deficient mice. Additionally, Ro25-1553-induced decreases in axon and dendritic outgrowth in wild-type mice were blocked by a protein kinase A (PKA) inhibitor H89, but not by a PKC inhibitor GF109203X or a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor U0126. PACAP38- induced facilitation of dendritic outgrowth was blocked by U0126. These results suggest that activation of the VPAC2 receptor impairs neurite outgrowth and decreases branching of cortical neurons by a PKA-dependent mechanism. These findings also imply that the VIPR2-linkage to mental health disorders may be due in part to deficits in neuronal maturation induced by VPAC2 receptor overactivation.

16.
Spine Surg Relat Res ; 3(4): 348-353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31768455

RESUMO

INTRODUCTION: This study aimed to determine impacts on walking ability of spinal deformity and imbalance as distinct from movement disorders in Parkinson's disease (PD). METHODS: Thirty-two patients (15 males, 17 females; mean age 72.5 years) were analyzed. Three, thirteen, eleven, and five were at Hoehn-Yahr stages I, II, III, and IV, respectively. In addition to various spinal imbalance and deformity classifications the following were assessed: Cobb angle (CA) for scoliosis, thoracic kyphosis (TK) at T2-12, thoracolumbar kyphosis(TLK) at T12-L2, lumbar lordosis(LL) at L1-S1, pelvic tilt(PT), pelvic incidence(PI), and sagittal vertical axis(SVA). The Timed Up and Go (TUG) test was used to measure walking ability. Patients were evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) part III, and bone mineral density (BMD) scans. RESULTS: Nineteen patients (59%) had spinal deformity and imbalance within the following classifications: thoracic scoliosis, 1; thoracic kyphosis, 2; lumbar scoliosis, 15; Pisa syndrome, 3; camptocormia, 2. Mean values were 20.0° CA for scoliosis, 42.3° TK, 14.8° TLK, 26.7° LL, 20.8° PT, 48.8° PI, and 66.4 mm SVA. The mean TUG score was 13.9s. The UPDRS III mean was 36.6±24.5 points. Mean BMD was 0.856 g/cm2 at lumbar L2-4 and 0.585 g/cm2 at the femoral neck. UPDRS part III (P<0.001), LL (P<0.05), and femoral neck BMD (P<0.05) significantly correlated to TUG test results. CONCLUSIONS: Distinct from the movement disorders of PD (UPDRS III), loss of normal LL and loss of BMD at the femoral neck were shown to be correlated with diminished walking ability (TUG test) in PD patients. When UPDRS improved in response to L-dopa, walking ability improved. In addition to any PD-specific interventions that contribute to the maintenance of ambulation, interventions specific to the restoration of LL, as well as early treatment for osteoporosis may positively affect HRQOL in PD.

17.
Neurochem Int ; 131: 104563, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589911

RESUMO

Peripheral lipopolysaccharide (LPS) injection induces systemic inflammation through the activation of the inhibitor of nuclear factor kappa B (NF-κB) kinase (IKK)/NF-κB signaling pathway, which promotes brain dysfunction resulting in conditions including anorexia. LPS-mediated reduction of food intake is associated with activation of NF-κB signaling and phosphorylation of the transcription factor signal transducer and activator of transcription 3 (STAT3) in the hypothalamus. We recently reported phospholipase C-related catalytically inactive protein (PRIP) as a new negative regulator of phosphatidylinositol 3-kinase/AKT signaling. AKT regulates the IKK/NF-κB signaling pathway; therefore, this study aimed to investigate the role of PRIP/AKT signaling in LPS-mediated neuroinflammation-induced anorexia. PRIP gene (Prip1 and Prip2) knockout (Prip-KO) mice intraperitoneally (ip) administered with LPS exhibited increased anorexia responses compared with wild-type (WT) controls. Although few differences were observed between WT and Prip-KO mice in LPS-elicited plasma pro-inflammatory cytokine elevation, hypothalamic pro-inflammatory cytokines were significantly upregulated in Prip-KO rather than WT mice. Hypothalamic AKT and IKK phosphorylation and IκB degradation were significantly increased in Prip-KO rather than WT mice, indicating further promotion of AKT-mediated NF-κB signaling. Consistently, hypothalamic STAT3 was further phosphorylated in Prip-KO rather than WT mice. Furthermore, suppressor of cytokine signaling 3 (Socs3), a negative feedback regulator for STAT3 signaling, and cyclooxogenase-2 (Cox2), a candidate molecule in LPS-induced anorexigenic responses, were upregulated in the hypothalamus in Prip-KO rather than WT mice. Pro-inflammatory cytokines were upregulated in hypothalamic microglia isolated from Prip-KO rather than WT mice. Together, these findings indicate that PRIP negatively regulates LPS-induced anorexia caused by pro-inflammatory cytokine expression in the hypothalamus, which is mediated by AKT-activated NF-κB signaling. Importantly, hypothalamic microglia participate in this PRIP-mediated process. Elucidation of PRIP-mediated neuroinflammatory responses may provide novel insights into the pathophysiology of many brain dysfunctions.


Assuntos
Anorexia/enzimologia , Encefalite/enzimologia , Hipotálamo/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Anorexia/induzido quimicamente , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Ingestão de Alimentos , Encefalite/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , NF-kappa B/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética
18.
Sci Rep ; 9(1): 12729, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484968

RESUMO

Cytokinesis is initiated by the formation and ingression of the cleavage furrow. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] accumulation followed by RhoA translocation to the cleavage furrow are prerequisites for cytokinesis progression. Here, we investigated whether phospholipase C (PLC)-related catalytically inactive protein (PRIP), a metabolic modulator of PI(4,5)P2, regulates PI(4,5)P2-mediated cytokinesis. We found that PRIP localised to the cleavage furrow during cytokinesis. Moreover, HeLa cells with silenced PRIP displayed abnormal cytokinesis. Importantly, PI(4,5)P2 accumulation at the cleavage furrow, as well as the localisation of RhoA and phospho-myosin II regulatory light chain to the cleavage furrow, were reduced in PRIP-silenced cells. The overexpression of oculocerebrorenal syndrome of Lowe-1 (OCRL1), a phosphatidylinositol-5-phosphatase, in cells decreased PI(4,5)P2 levels during early cytokinesis and resulted in cytokinesis abnormalities. However, these abnormal cytokinesis phenotypes were ameliorated by the co-expression of PRIP but not by co-expression of a PI(4,5)P2-unbound PRIP mutant. Collectively, our results indicate that PRIP is a component at the cleavage furrow that maintains PI(4,5)P2 metabolism and regulates RhoA-dependent progression of cytokinesis. Thus, we propose that PRIP regulates phosphoinositide metabolism correctively and mediates normal cytokinesis progression.


Assuntos
Membrana Celular/metabolismo , Citocinese , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Membrana Celular/genética , Células HeLa , Humanos , Fosfoinositídeo Fosfolipase C/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
19.
Sci Rep ; 7(1): 5408, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710365

RESUMO

The metabolic processes of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] into PI(3,4,5)P3 and the subsequent PI(3,4,5)P3 signalling are involved in cell migration. Dysfunctions in the control of this pathway can cause human cancer cell migration and metastatic growth. Here we investigated whether phospholipase C-related catalytically inactive protein (PRIP), a PI(4,5)P2-binding protein, regulates cancer cell migration. PRIP overexpression in MCF-7 and BT-549 human breast cancer cells inhibited cell migration in vitro and metastasis development in vivo. Overexpression of the PRIP pleckstrin homology domain, a PI(4,5)P2 binding motif, in MCF-7 cells caused significant suppression of cell migration. Consistent with these results, in comparison with wild-type cells, Prip-deficient mouse embryonic fibroblasts exhibited increased cell migration, and this was significantly attenuated upon transfection with a siRNA targeting p110α, a catalytic subunit of class I phosphoinositide 3-kinases (PI3Ks). PI(3,4,5)P3 production was decreased in Prip-overexpressing MCF-7 and BT-549 cells. PI3K binding to PI(4,5)P2 was significantly inhibited by recombinant PRIP in vitro, and thus the activity of PI3K was downregulated. Collectively, PRIP regulates the production of PI(3,4,5)P3 from PI(4,5)P2 by PI3K, and the suppressor activity of PRIP in PI(4,5)P2 metabolism regulates the tumour migration, suggesting PRIP as a promising target for protection against metastatic progression.


Assuntos
Movimento Celular/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Fosfoinositídeo Fosfolipase C/genética , Transdução de Sinais/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Cultivadas , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Metástase Neoplásica , Fosfoinositídeo Fosfolipase C/metabolismo , Interferência de RNA , Transplante Heterólogo
20.
Jpn Dent Sci Rev ; 53(1): 18-24, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28408965

RESUMO

Obesity is defined as abnormal or excessive fat accumulation. Chronic inflammation in fat influences the development of obesity-related diseases. Many reports state that obesity increases the risk of morbidity in many diseases, including hypertension, dyslipidemia, type 2 diabetes, coronary heart disease, stroke, sleep apnea, and breast, prostate and colon cancers, leading to increased mortality. Obesity is also associated with chronic neuropathologic conditions such as depression and Alzheimer's disease. However, there is strong evidence that weight loss reduces these risks, by limiting blood pressure and improving levels of serum triglycerides, total cholesterol, low-density lipoprotein (LDL)-cholesterol, and high-density lipoprotein (HDL)-cholesterol. Prevention and control of obesity is complex, and requires a multifaceted approach. The elucidation of molecular mechanisms driving fat metabolism (adipogenesis and lipolysis) aims at developing clinical treatments to control obesity. We recently reported a new regulatory mechanism in fat metabolism: a protein phosphatase binding protein, phospholipase C-related catalytically inactive protein (PRIP), regulates lipolysis in white adipocytes and heat production in brown adipocytes via phosphoregulation. Deficiency of PRIP in mice led to reduced fat accumulation and increased energy expenditure, resulting in a lean phenotype. Here, we evaluate PRIP as a new therapeutic target for the control of obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA