Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751424

RESUMO

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, can rescue the neuroendocrine secretion and sorting defects observed in HID-1 KO cells. Finally, we report that a point mutation within that domain, identified in patients with endocrine and neurological deficits, leads to loss of function.


Assuntos
Vesículas de Núcleo Denso , Hormônios Peptídicos , Humanos , Aminoácidos , Movimento Celular , Sistemas Neurossecretores
2.
Ann Neurol ; 90(1): 143-158, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33999436

RESUMO

OBJECTIVE: Precursors of peptide hormones undergo posttranslational modifications within the trans-Golgi network (TGN). Dysfunction of proteins involved at different steps of this process cause several complex syndromes affecting the central nervous system (CNS). We aimed to clarify the genetic cause in a group of patients characterized by hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy. METHODS: Whole exome sequencing was performed in seven individuals of six unrelated families with these features. Postmortem histopathological and HID1 expression analysis of brain tissue and pituitary gland were conducted in one patient. Functional consequences of the homozygous HID1 variant p.R433W were investigated by Seahorse XF Assay in fibroblasts of two patients. RESULTS: Bi-allelic variants in the gene HID1 domain-containing protein 1 (HID1) were identified in all patients. Postmortem examination confirmed cerebral atrophy with enlarged lateral ventricles. Markedly reduced expression of pituitary hormones was found in pituitary gland tissue. Colocalization of HID1 protein with the TGN was not altered in fibroblasts of patients compared to controls, while the extracellular acidification rate upon stimulation with potassium chloride was significantly reduced in patient fibroblasts compared to controls. INTERPRETATION: Our findings indicate that mutations in HID1 cause an early infantile encephalopathy with hypopituitarism as the leading presentation, and expand the list of syndromic CNS diseases caused by interference of TGN function. ANN NEUROL 2021;90:149-164.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Hipopituitarismo/genética , Alelos , Encefalopatias/patologia , Pré-Escolar , Epilepsia/patologia , Feminino , Humanos , Hipopituitarismo/patologia , Lactente , Masculino , Hipófise/patologia , Sequenciamento do Exoma , Adulto Jovem
3.
Mol Biol Cell ; 31(3): 157-166, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31825717

RESUMO

Regulated secretion of neuropeptides and peptide hormones by secretory granules (SGs) is central to physiology. Formation of SGs occurs at the trans-Golgi network (TGN) where their soluble cargo aggregates to form a dense core, but the mechanisms controlling the sorting of regulated secretory cargoes (soluble and transmembrane) away from constitutively secreted proteins remain unclear. Optimizing the use of the retention using selective hooks method in (neuro-)endocrine cells, we now quantify TGN budding kinetics of constitutive and regulated secretory cargoes. We further show that, by monitoring two cargoes simultaneously, it becomes possible to visualize sorting to the constitutive and regulated secretory pathways in real time. Further analysis of the localization of SG cargoes immediately after budding from the TGN revealed that, surprisingly, the bulk of two studied transmembrane SG cargoes (phogrin and VMAT2) does not sort directly onto SGs during budding, but rather exit the TGN into nonregulated vesicles to get incorporated to SGs at a later step. This differential behavior of soluble and transmembrane cargoes suggests a more complex model of SG biogenesis than anticipated.


Assuntos
Células Endócrinas/metabolismo , Vesículas Secretórias/metabolismo , Rede trans-Golgi/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Exocitose , Complexo de Golgi/metabolismo , Neuropeptídeos/metabolismo , Células PC12 , Transporte Proteico/fisiologia , Ratos , Rede trans-Golgi/fisiologia
4.
Mol Biol Cell ; 28(26): 3870-3880, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29074564

RESUMO

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Secretórias/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rede trans-Golgi/metabolismo , Animais , Exocitose , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Neuropeptídeos/metabolismo , Células PC12 , Transporte Proteico , Ratos
5.
Dev Cell ; 27(4): 425-37, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24210660

RESUMO

The regulated release of polypeptides has a central role in physiology, behavior, and development, but the mechanisms responsible for production of the large dense core vesicles (LDCVs) capable of regulated release have remained poorly understood. Recent work has implicated cytosolic adaptor protein AP-3 in the recruitment of LDCV membrane proteins that confer regulated release. However, AP-3 in mammals has been considered to function in the endolysosomal pathway and in the biosynthetic pathway only in yeast. We now find that the mammalian homolog of yeast VPS41, a member of the homotypic fusion and vacuole protein sorting (HOPS) complex that delivers biosynthetic cargo to the endocytic pathway in yeast, promotes LDCV formation through a common mechanism with AP-3, indicating a conserved role for these proteins in the biosynthetic pathway. VPS41 also self-assembles into a lattice, suggesting that it acts as a coat protein for AP-3 in formation of the regulated secretory pathway.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/metabolismo , Exocitose/fisiologia , Biogênese de Organelas , Via Secretória/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Células COS , Chlorocebus aethiops , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Endossomos/metabolismo , Humanos , Fusão de Membrana , Proteínas de Membrana/metabolismo , Células PC12 , Transporte Proteico , Ratos , Vesículas Secretórias/metabolismo , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas de Transporte Vesicular/genética
6.
PLoS Genet ; 9(9): e1003812, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086151

RESUMO

The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.


Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Citosol/metabolismo , Exocitose/genética , Hormônios Peptídicos/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Glucagon/genética , Glucagon/metabolismo , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Lisossomos , Redes e Vias Metabólicas , Camundongos , Neurônios/metabolismo , Interferência de RNA , Fator de Transcrição AP-1/genética
7.
Endocrinology ; 145(5): 2206-13, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14962997

RESUMO

Resistin is an adipose-derived hormone that has been proposed as a link among obesity, insulin resistance, and diabetes. In agreement with a role of resistin in insulin resistance, the administration of recombinant resistin led to glucose intolerance in mice and impaired insulin action in rat liver. However, the regulation of resistin expression by physiological conditions, hormones, or agents known to modulate insulin sensitivity does not always support the association between resistin and obesity-induced insulin resistance. In the present study we investigated the effects of leptin administration on adipose resistin expression in insulin-resistant and obese ob/ob mice. We show that the expression of resistin mRNA and protein in adipose tissue is lower in ob/ob than in wild-type control mice, in agreement with the reduced adipocyte resistin mRNA level reported in several models of obesity. Leptin administration in ob/ob mice resulted in improvement of insulin sensitivity concomitant with a decrease in resistin gene expression. The lack of effect of leptin on resistin in db/db mice indicated that the leptin inhibitory action on resistin expression requires the long leptin receptor isoform. In addition, we demonstrated that the effect of leptin on resistin expression was centrally mediated. High-fat feeding in C57BL/6J wild-type mice, which is known to induce the development of obesity and insulin resistance, produced an increase in resistin expression. Interestingly, in both ob/ob and high fat-fed mice we obtained a striking positive correlation between glycemia and resistin gene expression. In conclusion, our results demonstrate that leptin decreases resistin expression and suggest that resistin may influence glucose homeostasis.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Gorduras na Dieta/administração & dosagem , Hormônios Ectópicos/genética , Leptina/administração & dosagem , Proteínas do Tecido Nervoso , Obesidade/sangue , 11-beta-Hidroxiesteroide Desidrogenases/genética , Tecido Adiposo/química , Animais , Proteínas de Transporte/genética , Diabetes Mellitus/sangue , Modelos Animais de Doenças , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo , Expressão Gênica/efeitos dos fármacos , Homeostase , Hormônios Ectópicos/análise , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , RNA Mensageiro/análise , Resistina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA