Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323509

RESUMO

Protein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis.IMPORTANCE PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Despite its ubiquitous necessity, specific PKA effectors underlying microbial disease remain unknown. To address this fundamental knowledge gap, we examined the whole-proteomic and phosphoproteomic impacts of PKA on the deadly fungal pathogen Aspergillus fumigatus to uncover novel PKA targets controlling growth and virulence. We also defined the functional consequences of specific posttranslational modifications of these target proteins to characterize the molecular mechanisms of pathogenic effector regulation by PKA. This study constitutes the most comprehensive analysis of the PKA-dependent phosphoproteome of any human pathogen and proposes new and complex roles played by PKA signaling networks in governing infectious disease.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/genética , Humanos , Camundongos , Fosforilação , Proteoma/genética , Proteômica , Virulência
2.
J Pediatr Surg ; 55(3): 475-481, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31301886

RESUMO

BACKGROUND/PURPOSE: In 2004, a heritable occurrence of spina bifida was reported in sheep on a farm in the United States. We maintained and characterized the spina bifida phenotype in this flock to assess its potential as an alternative surgical model. METHODS: A breeding strategy was developed in which the sheep were crossed to maintain or increase the occurrence of spina bifida. Measurements and observations were recorded regarding lesion size, birthweight, ambulatory capacity, or urological function, and necropsies were performed on spina bifida afflicted lambs in conjunction with magnetic resonance imaging to determine the character of the spina bifida defects and assess the presence of Chiari-like malformations or hydrocephalus. RESULTS: The defects were observed to be more prevalent in ram lambs, and the rate of spina bifida per litter could be increased through backcrossing or by selection of a productive ewe breed. The lambs displayed a range of ambulatory and urological deficits which could be used to evaluate new fetal repair methodologies. Finally, affected lambs were shown to demonstrate severe Chiari malformations and hydrocephalus. CONCLUSIONS: We have determined that use of these sheep as a natural source for spina bifida fetuses is feasible and could supplement the deficits of current sheep models for myelomeningocele repair. LEVEL OF EVIDENCE: Level IV.


Assuntos
Modelos Animais de Doenças , Fetoscopia , Meningomielocele , Disrafismo Espinal , Animais , Feminino , Meningomielocele/genética , Meningomielocele/patologia , Meningomielocele/cirurgia , Gravidez , Ovinos , Disrafismo Espinal/patologia , Disrafismo Espinal/cirurgia
3.
J Inherit Metab Dis ; 41(6): 965-976, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30043186

RESUMO

BACKGROUND: Glycogen storage disease type Ia (GSD Ia) in dogs closely resembles human GSD Ia. Untreated patients with GSD Ia develop complications associated with glucose-6-phosphatase (G6Pase) deficiency. Survival of human patients on intensive nutritional management has improved; however, long-term complications persist including renal failure, nephrolithiasis, hepatocellular adenomas (HCA), and a high risk for hepatocellular carcinoma (HCC). Affected dogs fail to thrive with dietary therapy alone. Treatment with gene replacement therapy using adeno-associated viral vectors (AAV) expressing G6Pase has greatly prolonged life and prevented hypoglycemia in affected dogs. However, long-term complications have not been described to date. METHODS: Five GSD Ia-affected dogs treated with AAV-G6Pase were evaluated. Dogs were euthanized due to reaching humane endpoints related to liver and/or kidney involvement, at 4 to 8 years of life. Necropsies were performed and tissues were analyzed. RESULTS: Four dogs had liver tumors consistent with HCA and HCC. Three dogs developed renal failure, but all dogs exhibited progressive kidney disease histologically. Urolithiasis was detected in two dogs; uroliths were composed of calcium oxalate and calcium phosphate. One affected and one carrier dog had polycystic ovarian disease. Bone mineral density was not significantly affected. CONCLUSIONS: Here, we show that the canine GSD Ia model demonstrates similar long-term complications as GSD Ia patients in spite of gene replacement therapy. Further development of gene therapy is needed to develop a more effective treatment to prevent long-term complications of GSD Ia.


Assuntos
Carcinoma Hepatocelular/etiologia , Terapia Genética , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/etiologia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Cães , Feminino , Vetores Genéticos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hipoglicemia/genética , Hipoglicemia/metabolismo , Fígado/patologia , Masculino
4.
mBio ; 8(1)2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28174315

RESUMO

Invasive aspergillosis (IA), caused by the filamentous fungal pathogen Aspergillus fumigatus, is a major cause of death among immunocompromised patients. The cyclic AMP/protein kinase A (PKA) signaling pathway is essential for hyphal growth and virulence of A. fumigatus, but the mechanism of regulation of PKA remains largely unknown. Here, we discovered a novel mechanism for the regulation of PKA activity in A. fumigatus via phosphorylation of key residues within the major catalytic subunit, PkaC1. Phosphopeptide enrichment and tandem mass spectrometry revealed the phosphorylation of PkaC1 at four sites (S175, T331, T333, and T337) with implications for important and diverse roles in the regulation of A. fumigatus PKA. While the phosphorylation at one of the residues (T333) is conserved in other species, the identification of three other residues represents previously unknown PKA phosphoregulation in A. fumigatus Site-directed mutagenesis of the phosphorylated residues to mimic or prevent phosphorylation revealed dramatic effects on kinase activity, growth, conidiation, cell wall stress response, and virulence in both invertebrate and murine infection models. Three-dimensional structural modeling of A. fumigatus PkaC1 substantiated the positive or negative regulatory roles for specific residues. Suppression of PKA activity also led to downregulation of PkaC1 protein levels in an apparent novel negative-feedback mechanism. Taken together, we propose a model in which PkaC1 phosphorylation both positively and negatively modulates its activity. These findings pave the way for future discovery of fungus-specific aspects of this key signaling network. IMPORTANCE: Our understanding of signal transduction networks in pathogenic fungi is limited, despite the increase in invasive fungal infections and rising mortality rates in the immunosuppressed patient population. Because PKA is known to be essential for hyphal growth and virulence of A. fumigatus, we sought to identify fungus-specific regulatory mechanisms governing PKA activity. In this study, we identify, for the first time, a novel mechanism for the regulation of PKA signaling in which differential phosphorylation of the PkaC1 catalytic subunit can lead to either positive or negative regulation of activity. Furthermore, we show that inactivation of PKA signaling leads to downregulation of catalytic subunit protein levels in a negative-feedback mechanism distinct from expression patterns previously reported in the yeasts. Our findings represent a divergence in the regulation of PKA signaling in A. fumigatus, which could potentially be exploited as a target and also open the avenue for discovery of fungus-specific downstream effectors of PKA.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Lepidópteros , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , Estresse Fisiológico , Espectrometria de Massas em Tandem , Virulência
5.
Infect Immun ; 84(5): 1556-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953327

RESUMO

Myosins are a family of actin-based motor proteins found in many organisms and are categorized into classes based on their structures. Class II and V myosins are known to be important for critical cellular processes, including cytokinesis, endocytosis, exocytosis, and organelle trafficking, in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans However, the roles of myosins in the growth and virulence of the pathogen Aspergillus fumigatus are unknown. We constructed single- and double-deletion strains of the class II and class V myosins in A. fumigatus and found that while the class II myosin (myoB) is dispensable for growth, the class V myosin (myoE) is required for proper hyphal extension; deletion of myoE resulted in hyperbranching and loss of hyphal polarity. Both myoB and myoE are necessary for proper septation, conidiation, and conidial germination, but only myoB is required for conidial viability. Infection with the ΔmyoE strain in the invertebrate Galleria mellonella model and also in a persistently immunosuppressed murine model of invasive aspergillosis resulted in hypovirulence, while analysis of bronchoalveolar lavage fluid revealed that tumor necrosis factor alpha (TNF-α) release and cellular infiltration were similar compared to those of the wild-type strain. The ΔmyoE strain showed fungal growth in the murine lung, while the ΔmyoB strain exhibited little fungal burden, most likely due to the reduced conidial viability. These results show, for the first time, the important role these cytoskeletal components play in the growth of and disease caused by a known pathogen, prompting future studies to understand their regulation and potential targeting for novel antifungal therapies.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Miosinas/metabolismo , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/genética , Contagem de Colônia Microbiana , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Pulmão/microbiologia , Masculino , Camundongos , Viabilidade Microbiana , Miosinas/deficiência , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
6.
Eukaryot Cell ; 9(3): 472-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20097742

RESUMO

The Aspergillus fumigatus DeltapmrA (Golgi apparatus Ca(2+)/Mn(2+) P-type ATPase) strain has osmotically suppressible basal growth defects and cationic tolerance associated with increased expression of calcineurin pathway genes. Despite increased beta-glucan and chitin content, it is hypersensitive to cell wall inhibitors but remains virulent, suggesting a role for PmrA in cation homeostasis and cell wall integrity.


Assuntos
Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Cátions/metabolismo , Parede Celular/metabolismo , Complexo de Golgi/enzimologia , Homeostase , Aminoglicosídeos/farmacologia , Animais , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Caspofungina , Cátions/farmacologia , Proliferação de Células/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Quitina/metabolismo , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Ácido Egtázico/farmacologia , Proteínas Fúngicas/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Homeostase/genética , Concentração de Íons de Hidrogênio , Aspergilose Pulmonar Invasiva/genética , Aspergilose Pulmonar Invasiva/patologia , Estimativa de Kaplan-Meier , Lipopeptídeos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Solução Salina Hipertônica/farmacologia , Sorbitol/farmacologia , Estresse Fisiológico/genética , Regulação para Cima/genética , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA