Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Cancer Genomics Proteomics ; 21(2): 158-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38423601

RESUMO

BACKGROUND/AIM: The prognosis of patients with malignant pleural mesothelioma (MPM) remains poor due to lack of effective therapeutic targets. DNA damage caused by long-time exposure to asbestos fibers has been associated with the development of MPM, with mutations at genes encoding DNA damage repair (DDR)-related molecules frequently expressed in patients with MPM. The present study was designed to identify novel therapeutic targets in MPM using large public databases, such as The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression project (GTEx) focused on DDR pathways. MATERIALS AND METHODS: The correlations between mRNA expression levels of DDR-related genes and overall survival (OS) were analyzed in mesothelioma patients in TCGA mesothelioma (TCGA-MESO) datasets. The anti-tumor effects of small interfering RNAs (siRNA) against DDR-related genes associated with OS were subsequently tested in MPM cell lines. RESULTS: High levels of mRNA encoding DNA polymerase delta 1, catalytic subunit (POLD1) were significantly associated with reduced OS in patients with MPM (p<0.001, Log-rank test). In addition, siRNA targeting POLD1 (siPOLD1) caused cell cycle arrest at the G1/S checkpoint and induced apoptosis involving accumulation of DNA damage in MPM cell lines. CONCLUSION: POLD1 plays essential roles in overcoming DNA damage and cell cycle progression at the G1/S checkpoint in MPM cells. These findings suggest that POLD1 may be a novel therapeutic target in MPM.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , DNA Polimerase III/genética , Neoplasias Pulmonares/patologia , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Mesotelioma/genética , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Ciclo Celular/genética , Dano ao DNA , RNA Mensageiro
2.
J Nat Med ; 78(2): 370-381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265612

RESUMO

The Wnt/ß-catenin signaling pathway plays important roles in several cancer cells, including cell proliferation and development. We previously succeeded in synthesizing a small molecule compound inhibiting the Wnt/ß-catenin signaling pathway, named LPD-01 (1), and 1 inhibited the growth of human colorectal cancer (HT-29) cells. In this study, we revealed that 1 inhibits the growth of HT-29 cells stronger than that of another human colorectal cancer (SW480) cells. Therefore, we have attempted to identify the target proteins of 1 in HT-29 cells. Firstly, we investigated the effect on the expression levels of the Wnt/ß-catenin signaling pathway-related proteins. As a result, 1 inhibited the expression of target proteins of Wnt/ß-catenin signaling pathway (c-Myc and Survivin) and their genes, whereas the amount of transcriptional co-activator (ß-catenin) was not decreased, suggesting that 1 inhibited the Wnt/ß-catenin signaling pathway without affecting ß-catenin. Next, we investigated the target proteins of 1 using magnetic FG beads. Chemical pull-down assay combined with mass spectrometry suggested that 1 directly binds to importin7. As expected, 1 inhibited the nuclear translocation of importin7 cargoes such as Smad2 and Smad3 in TGF-ß-stimulated HT-29 cells. In addition, the knockdown of importin7 by siRNA reduced the expression of target genes of Wnt/ß-catenin signaling pathway. These results suggest that importin7 is one of the target proteins of 1 for inhibition of the Wnt/ß-catenin signaling pathway.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , beta Catenina/metabolismo , Via de Sinalização Wnt , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
3.
Cancer Genomics Proteomics ; 21(1): 18-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38151292

RESUMO

BACKGROUND/AIM: Pancreatic cancer is one of the most lethal malignant cancers worldwide and the seventh most common cause of cancer-related death in both sexes. Herein, we analyzed open access data and discovered that expression of a gene called deoxynucleotidyltransferase terminal-interacting protein 2 (DNTTIP2) is linked to prognosis of pancreatic ductal adenocarcinoma (PDAC). We then elucidated the role of DNTTIP2 in the proliferation of pancreatic cancer cells in vitro. MATERIALS AND METHODS: A WST-8 assay, cell cycle analysis, Annexin-V staining, quantitative reverse transcription-PCR, and western blot analysis were conducted to assess cell proliferation, cell cycle, apoptosis, and expression of DNTTIP2 mRNA and protein, respectively, in DNTTIP2-depleteted MIA-PaCa-2 and PK-1 cells. RESULTS: Depletion of DNTTIP2 induced G1 arrest in MIA-PaCa-2 cells by decreasing expression of special AT-rich sequence binding protein 1 (SATB1) and cyclin-dependent kinase 6 (CDK6). In addition, depletion of DNTTIP2 induced G2 arrest in PK-1 cells by decreasing expression of CDK1. Depletion of DNTTIP2 did not induce apoptosis in MIA-PaCa-2 or PK-1 cells. CONCLUSION: DNTTIP2 is involved in proliferation of pancreatic cancer cells. Thus, DNTTIP2 is a potential target for inhibiting progression of pancreatic cancers.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Neoplasias Pancreáticas , Feminino , Humanos , Masculino , Apoptose/genética , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas/patologia , Fatores de Transcrição
4.
Front Oncol ; 13: 1258442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033489

RESUMO

Dysregulated extracellular pH, the universal feature of tumor, works as an evolutional force to drive dissemination of tumor cells. It is well-established that tumor acidity is associated with tumor growth and metastasis. However, the pH of pre-metastatic niche remains unclear. We hypothesized that primary tumor cells remotely prime acidity in secondary organ to achieve metastatic colonization. Herein, we demonstrated that the pH responsive probe pH Low Insertion Peptide (pHLIP) was notably accumulated in pre-metastatic lungs of 4T1.2 breast tumor-bearing mice. The pHLIP-targeted lungs showed high amounts of lactate and overexpressed glycolysis-related proteins. Pharmacological inhibition of glycolysis suppressed the lung acidification induced by 4T1.2 cancer cell culture supernatant and delayed subsequent metastatic burden of disseminated tumor cells. In the acidic lungs, pHLIP was primarily localized in alveolar type 2 cells which strongly expressed glycolysis-related proteins. 4T1.2-derived extracellular vesicles expressed some of the glycolysis-related proteins, and their administration increased pHLIP accumulation and glycolytic enhancement in lungs. pHLIP-conjugated dexamethasone effectively attenuated lung metastatic burden by disrupting pro-inflammatory response in the acidic lungs. From these results, targeting the metastasis-supporting microenvironment by pHLIP technology creates possibility to identify pre-metastatic organ and prevent metastatic recurrence.

5.
Chem Pharm Bull (Tokyo) ; 71(11): 819-823, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730339

RESUMO

Exosomes are a type of extracellular vesicles that contain diverse molecules and are present in our body fluids. They play a crucial role in transporting materials and transmitting signals between cells. Currently, there have been numerous reports on the use of exosomes in drug delivery systems (DDS). However, most existing methods for utilizing exosomes in DDS require the isolation and purification of exosomes, which raises concerns about yield and potential damage to the exosomes. Recently, we have developed a novel DDS called "ExomiR-Tracker" that harnesses exosomes without the need for isolation and purification. This system aims to deliver nucleic acid drugs effectively. ExomiR-Tracker consists of an anti-exosome antibody equipped with nona-D-arginines (9 mer) and nucleic acid drugs which have complementary sequence of target microRNA (anti-miR). In this study, we modified ExomiR-Tracker by incorporating branched nona-D-arginines (9 + 9 mer) molecules (referred to as Branch ExomiR-Tracker) and evaluated its efficacy in lung adenocarcinoma cells (A549 cells). The improved complex formation ability and enhanced cellular uptake of anti-miR, demonstrated by our findings, highlight the advantages of incorporating branched oligoarginine peptides into the ExomiR-Tracker platform. These results represent significant progress in revealing the effectiveness of Branch ExomiR-Tracker against adhesive cancer cells, which has not been shown to be effective with the conventional Linear ExomiR-Tracker.


Assuntos
Adenocarcinoma de Pulmão , Exossomos , Humanos , Exossomos/química , Oligonucleotídeos Antissenso/análise , Antagomirs/análise , Sistemas de Liberação de Medicamentos/métodos , Adenocarcinoma de Pulmão/tratamento farmacológico
6.
Anticancer Res ; 43(2): 547-555, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697063

RESUMO

BACKGROUND/AIM: The prognosis of patients with multiple myeloma (MM) has recently improved due to the emergence of new molecular targeting agents. However, MM remains incurable because MM stem cells are resistant to these agents. Therefore, it is essential to develop strategies to eradicate MM stem cells. We have previously demonstrated that MM cells cultured under prolonged hypoxic conditions (1% O2) (i.e., hypoxia-adapted MM cells; MM-HA cells) exhibited stem-cell-like characteristics. γδ T cells attack tumor cells by recognizing butyrophilin (BTN) 3A1 and BTN2A1, which are activated by the intracellular accumulation of isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway. In the present study, we investigated the cytotoxicity of γδ T cells against MM-HA stem-like cells. MATERIALS AND METHODS: We used a combination of flow cytometry, liquid chromatography-tandem mass spectrometry, and western blotting methods to investigate the cytotoxicity of γδ T cells against MM-HA cells and measured the amounts of IPP in MM-HA cells and their supernatants. RESULTS: The cytotoxicity of γδ T cells against MM-HA cells was significantly lower than that against MM cells cultured under normoxic conditions (20% O2; MM-Normo). Furthermore, the concentration of IPP in MM-HA cells was lower than that in MM-Normo cells. The expression of mevalonate decarboxylase and farnesyl diphosphate synthase proteins were decreased in MM-HA-cells. CONCLUSION: The cytotoxicity of γδ T cells against MM-HA cells was suppressed by the reduced IPP accumulation by modulating the mevalonate pathway in MM-HA cells.


Assuntos
Ácido Mevalônico , Mieloma Múltiplo , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Hipóxia , Células-Tronco , Ativação Linfocitária
7.
Biochem Biophys Res Commun ; 638: 200-209, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462494

RESUMO

Advances in pharmacy and medicine have led to the development of many anti-cancer and molecular targeted agents; however, there are few agents capable of suppressing metastasis. To prevent cancer recurrence, it is essential to develop novel agents for inhibiting metastasis. Coumarin-based compounds have multiple pharmacological activities including anti-cancer effects. We screened a compound library constructed at Kyoto Pharmaceutical University and showed that 7,8-dihydroxy-3-(4'-hydroxyphenyl)coumarin (DHC) inhibited invasion and migration of LM8 mouse osteosarcoma cells and 143B human osteosarcoma cells in a concentration-dependent manner. DHC decreased intracellular actin filament formation by downregulating Rho small GTP-binding proteins such as RHOA, RAC1, and CDC42, which regulate actin reorganization. However, DHC did not downregulate the corresponding mRNA transcripts, whereas it downregulated Rho small GTP-binding proteins in the presence of cycloheximide, suggesting that DHC enhances the degradation of these proteins. DHC treatment inhibited metastasis and prolonged overall survival in a spontaneous metastasis mouse model. These results indicate that DHC has the potential to suppress metastasis of osteosarcoma cells by downregulating Rho small GTP-binding proteins.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Humanos , Movimento Celular , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Cancers (Basel) ; 14(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35158834

RESUMO

Nucleic acid medicines have been developed as new therapeutic agents against various diseases; however, targeted delivery of these reagents into cancer cells, particularly hematologic cancer cells, via systemic administration is limited by the lack of efficient and cell-specific delivery systems. We previously demonstrated that monoclonal antibody (mAb)-oligonucleotide complexes targeting exosomal microRNAs with linear oligo-D-arginine (Arg) linkers were transferred into solid cancer cells and inhibited exosomal miRNA functions. In this study, we developed exosome-capturing anti-CD63 mAb-conjugated small interfering RNAs (siRNAs) with branched Arg linkers and investigated their effects on multiple myeloma (MM) cells. Anti-CD63 mAb-conjugated siRNAs were successfully incorporated into MM cells. The incorporation of exosomes was inhibited by endocytosis inhibitors. We also conducted a functional analysis of anti-CD63 mAb-conjugated siRNAs. Ab-conjugated luciferase+ (luc+) siRNAs significantly decreased the luminescence intensity in OPM-2-luc+ cells. Moreover, treatment with anti-CD63 mAb-conjugated with MYC and CTNNB1 siRNAs decreased the mRNA transcript levels of MYC and CTNNB1 to 52.5% and 55.3%, respectively, in OPM-2 cells. In conclusion, exosome-capturing Ab-conjugated siRNAs with branched Arg linkers can be effectively delivered into MM cells via uptake of exosomes by parental cells. This technology has the potential to lead to a breakthrough in drug delivery systems for hematologic cancers.

9.
Biochem Biophys Res Commun ; 590: 49-54, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34971957

RESUMO

Acute lymphoblastic leukemia with chromosomal rearrangements involving the mixed-lineage leukemia (MLL) gene (MLL-r ALL) remains an incurable disease. Thus, development of a safe and effective therapeutic agent to treat this disease is crucial to address this unmet medical need. BRD4, a member of the bromodomain and extra-terminal domain (BET) protein family, and cyclic AMP response element binding protein binding protein (CBP) and p300, two paralogous histone acetyltransferases, are all considered cancer drug targets and simultaneous targeting of these proteins may have therapeutic advantages. Here, we demonstrate that a BET/CBP/p300 multi-bromodomain inhibitor, CN470, has anti-tumor activity against MLL-r ALL in vitro and in vivo. CN470, potently inhibited ligand binding to the bromodomains of BRD4, CBP, and p300 and suppressed the growth of MLL-r ALL cell lines and patient-derived cells with MLL rearrangements. CN470 suppressed mRNA and protein expression of MYC and induced apoptosis in MLL-r ALL cells, following a cell cycle arrest in the G1 phase. Moreover, CN470 reduced BRD4 binding to acetylated histone H3. The in vivo effects of CN470 were investigated using SEMLuc/GFP cells expressing luminescent markers in an orthotopic mouse model. Mice administered CN470 daily had prolonged survival compared to the vehicle group. Further, CN470 also showed anti-tumor effects against an MLL-r ALL patient-derived xenograft model. These findings suggest that inhibition of BET/CBP/p300 by the multi-bromodomain inhibitor, CN470, represents a promising therapeutic approach against MLL-r ALL.


Assuntos
Antineoplásicos/farmacologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteína p300 Associada a E1A/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Rearranjo Gênico/efeitos dos fármacos , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Gene Ther ; 29(1): 37-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33402732

RESUMO

Metabolic reprogramming leading to aerobic glycolysis, termed the "Warburg effect," is a critical property of cancer cells. However, the precise mechanisms underlying this phenomenon are not fully understood. A growing body of evidence indicates that γ-glutamylcyclotransferase (GGCT), an enzyme involved in glutathione homeostasis that is highly expressed in many types of cancer, represents a promising therapeutic target. In this study, we identified GGCT as a novel regulator of hypoxia-inducible factor-1α (HIF-1α), a transcription factor that plays a role in hypoxia adaptation promoting aerobic glycolysis. In multiple human cancer cell lines, depletion of GGCT downregulated HIF-1α at the mRNA and protein levels. Conversely, in NIH3T3 mouse fibroblasts, overexpression of GGCT upregulated HIF-1α under normoxia. Moreover, depletion of GGCT downregulated HIF-1α downstream target genes involved in glycolysis, whereas overexpression of GGCT upregulated those genes. Metabolomic analysis revealed that modulation of GGCT expression induced a metabolic switch from the citric acid cycle to glycolysis under normoxia. In addition, we found that GGCT regulates expression of HIF-1α protein via the AMPK-mTORC1-4E-BP1 pathway in PC3 cells. Thus GGCT regulates the expression of HIF-1α in cancer cells, causing a switch to glycolysis.


Assuntos
Ciclo do Ácido Cítrico , gama-Glutamilciclotransferase , Animais , Linhagem Celular Tumoral , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Células NIH 3T3 , gama-Glutamilciclotransferase/genética
11.
Biochem Biophys Res Commun ; 588: 47-54, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952469

RESUMO

Human γδ T cells expressing Vγ9Vδ2 T cell receptors exert a robust response to pathogens and malignant cells. These cells are activated by BTN3A1, which is expressed by pathogen-derived phosphoantigens (pAgs) or host-derived pAgs that accumulate in transformed cells or in cells exposed to aminobisphosphonates. Activated Vδ2 (+) T cells exert multiple effector functions; therefore, they are a promising candidate for immunotherapy. However, not all donors have γδ T cells with adequate proliferative activity. Here, we performed ex vivo culture of γδ T cells from 20 healthy donors and explored factors that may affect their expansion efficiency. Consistent with previous studies, we found that amplification of γδ T cells requires CD14+ monocytes to act as accessory cells. We also show here that surface expression of BTN3A1 by monocytes correlates positively with γδ T cell expansion. Moreover, treatment with BTN3A1-Fc increased the expansion efficiency of peripheral blood mononuclear cells (PBMCs) from donors harboring γδ T cells with poor expansion capacity. Taken together, the data suggest that the level of BTN3A1 expressed on the surface of monocytes is a useful biomarker for predicting the degree of expansion of γδ T cells.


Assuntos
Antígenos CD/genética , Butirofilinas/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Receptores de Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Adulto , Idoso , Antígenos CD/metabolismo , Butirofilinas/metabolismo , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Receptores Fc/metabolismo , Ácido Zoledrônico/farmacologia
12.
Biochem Biophys Res Commun ; 588: 147-153, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954522

RESUMO

Among acute leukemias, mixed-lineage leukemia-rearranged (MLL-r) leukemia is associated with poor prognosis. Bromodomain and extra-terminal inhibitors (BETi) are promising agents for treatment of hematological malignancies; however, the mechanisms underlying sensitivity to BETi and biomarkers to predict sensitivity are yet to be clarified. Here, we established OTX015-resistant MLL-r cell lines (OTX015-R cells) and used them to explore therapeutic targets in BETi-resistant MLL-r leukemia. OTX015-R cells exhibited resistance to various BETi, and levels of bromodomain-containing protein 4 (BRD4) and BRD4-regulated molecules, such as c-MYC and B-cell/CLL lymphoma-2 (BCL-2), were remarkably increased in OTX015-R cells relative to those in the parental cells; however, BRD4 mRNA transcript levels were not elevated. These results suggest that overexpression of BRD4 protein, through suppression of BRD4 degradation, may contribute to BETi-resistance. Notably, expression of ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5) was increased in OTX015-R cells. Further, a UCHL5 inhibitor, b-AP15, and UCHL5 knockdown had antitumor effects by degrading BRD4. In addition, sensitivity to OTX015 was partially recovered in OTX015-R cells pretreated with b-AP15. Furthermore, cyclin-dependent kinase 4/6 (CDK4/6) inhibition decreased UCHL5 expression, suppressed OTX015-R cell proliferation, and induced apoptosis. These results indicate that the CDK4/6-UCHL5-BRD4 axis confers resistance to BETi by suppressing BRD4 degradation. We propose that this pathway is a potential novel therapeutic target in BETi-resistant MLL-r leukemia with BRD4 overexpression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Leucemia/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/metabolismo , Acetanilidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Compostos Heterocíclicos com 3 Anéis/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores
13.
Biochem Biophys Res Commun ; 573: 132-139, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34407491

RESUMO

Human γδ T cells expressing Vγ9Vδ2 T cell receptors play a crucial role in the innate immune system and have an attracted interest as effector cells in adoptive cellular immunotherapy. However, the efficacy of adoptive cellular immunotherapy for the treatment of tumors requires overcoming the immunosuppressive microenvironment. αß T cell inhibition in the tumor microenvironment is associated with programmed death-ligand 1 (PD-L1) expression level. Vγ9Vδ2 T cells (abbreviated as γδ T cells here) exert potent cytotoxic effects in various cancers; however, γδ T cell activity in relation to the level of PD-L1 expression in cancer cells remains unclear, and the association between the PD-1/PD-L1 axis and γδ T cell cytotoxicity needs to be investigated. In this study, PD-1 blockade did not increase the cytotoxicity of γδ T cells against PD-L1high cancer cells. However, the anti-PD-L1 monoclonal antibody (mAb) enhanced the cytotoxicity of γδ T cells against a subset of cancer cells, whereas PD-L1 knockdown did not increase the cytotoxicity of γδ T cells. We also found that the expression levels of PD-L1 were positively correlated with the changes of γδ T cells cytotoxicity induced by anti-PD-L1 mAb. These observations suggest that anti-PD-L1 mAb treatment adds ADCC activity to the cytotoxicity of γδ T cells itself against PD-L1high cancer cells. The present results suggest that ex vivo expanded γδ T cells have antitumor activity independently of PD-L1 expression and may be promising effector cells for γδ T cell immunotherapy.


Assuntos
Antígeno B7-H1/genética , Imunoterapia , Neoplasias/imunologia , Linfócitos T/imunologia , Antígeno B7-H1/imunologia , Humanos , Neoplasias/terapia , Células Tumorais Cultivadas
14.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445615

RESUMO

Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.


Assuntos
Citotoxicidade Imunológica/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo
15.
Bioorg Med Chem Lett ; 45: 128161, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062253

RESUMO

Linderapyrone, a Wnt signal inhibitor was isolated from the methanolic extract of the stems and twigs of Lindera umbellata together with epi-(-)-linderol A. Linderapyrone inhibited TCF/ß-catenin transcriptional activity that was evaluated using cell-based TOPFlash luciferase assay system. To evaluate the structure-activity relationship and mechanism, we synthesized linderapyrone and its derivatives from piperitone. As the results of further bioassay for synthesized compounds, we found both of pyrone and monoterpene moieties were necessary for inhibitory effect. cDNA microarray analysis in a linderapyrone derivative treated human colorectal cancer cells showed that this compound downregulates Wnt signaling pathway. Moreover, we successes to synthesize the derivative of linderapyrone that has stronger inhibitory effect than linderapyrone and ICG-001 (positive control).


Assuntos
Lindera/química , Fatores de Transcrição TCF/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
16.
Biosens Bioelectron ; 179: 113077, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607416

RESUMO

Hydrogen peroxide (H2O2) is one of the main second messengers involved in signaling pathways controlling cell metabolism. During tumorigenesis H2O2 is generated on the extracellular space by membrane-associated NADPH oxidases and superoxide dismutase to stimulate cell proliferation and preservation of the transformed state. Accordingly, a characteristic feature of malignant cells is overproduction of H2O2 in the extracellular milieu and the subsequent absorption in the cytosol. Since the most significant gradients of endogenous extracellular H2O2 can be observed only in a very shallow region of the fluid in contact with the plasma membrane, we show here the use of a newly designed nanosensor anchored to the outer cell surface and capable of quantifying H2O2 at nanometer distance from the membrane proteins responsible for its production. This biosensor is built upon gold nanoparticles functionalized with a H2O2-sensitive boronate compound that is probed using surface enhanced Raman spectroscopy (SERS). The highly localized information obtained on the cell surface by SERS analysis is combined with analytical methods of redox biology to estimate the associated levels of intracellular H2O2 responsible for cell signaling. The results obtained from A549 lung cancer cell line show localized spots on the cell surface at concentration up to 12 µM, associated to intracellular concentration up to 5.1 nM.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Membrana Celular , Ouro , Peróxido de Hidrogênio , NADPH Oxidases
17.
Biochem Biophys Res Commun ; 535: 73-79, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33341676

RESUMO

The Wnt/ß-catenin pathway is an attractive target for the treatment of acute myelogenous leukemia (AML), since aberrant activation of the Wnt/ß-catenin pathway contributes to carcinogenesis in various types of cancers including AML. Screening of an in-house compound library, constructed at Kyoto Pharmaceutical University, identified a novel compound designated "31" that was found to be an inhibitor of the Wnt/ß-catenin pathway. The compound inhibited T-cell factor (TCF) activity in a TCF firefly luciferase-reporter assay and suppressed the proliferation of several human AML cell lines in a dose-dependent manner. Compound 31 arrested the cell cycle of AML cells at the G1 stage and induced apoptosis. Decrease in protein and mRNA expression level of Wnt pathway-related molecules was confirmed by the analyses of western blotting and quantitative reverse transcription-polymerase chain reaction. In addition, compound 31 combined with idarubicin synergistically inhibited the proliferation of AML cells. In conclusion, these results strongly suggest that compound 31 has potential as a novel anti-AML agent targeting the Wnt/ß-catenin signaling pathway.


Assuntos
Dipeptídeos/farmacologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Antineoplásicos/análise , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Idarubicina/farmacologia , Luciferases/metabolismo
18.
Anticancer Res ; 40(10): 5481-5487, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988870

RESUMO

BACKGROUND/AIM: γδ T cells mediate cytotoxicity against prostate cancer (PCa) cells in vitro; however, the clinical efficacy of γδ T cell-targeted immunotherapy for recurrent and metastatic PCa is unsatisfactory. We hypothesized that the resistance of recurrent and metastatic PCa to γδ T cells is related to the presence of prostate cancer stem cells (PCSCs), and we examined their relationship. MATERIALS AND METHODS: PCa spheres (prostaspheres) were generated from five PCa cell lines, and their susceptibility to cytotoxicity by γδ T cells was investigated. Expression of stemness-related markers was evaluated by qRT-PCR. RESULTS: Prostasphere-derived cancer cells were resistant to lysis by γδ T cells and expressed higher levels of several stemness markers, including CD133, NANOG, SOX2, and OCT4, than the parental PCa cell lines. CONCLUSION: Ex vivo-expanded γδ T cells are not effective against PCSCs.


Assuntos
Linfócitos Intraepiteliais/imunologia , Células-Tronco Neoplásicas/imunologia , Neoplasias da Próstata/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Antígeno AC133/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Masculino , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Fatores de Transcrição SOXB1/genética , Linfócitos T
19.
Biol Pharm Bull ; 43(8): 1253-1258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741946

RESUMO

Long-term combination treatment with lenalidomide and low-dose dexamethasone is important to achieve a curative effect in patients with multiple myeloma (MM). In this study, the plasma concentration of lenalidomide was measured at 3 h after oral administration, when the drug is in the elimination phase and can be easily measured in outpatients, to identify factors that may lead to the discontinuation of this combination therapy. Patients were assigned to continuation or discontinuation of therapy groups, and the baseline characteristics of patients, lenalidomide concentration, and concentration/dose (C/D) ratios reflecting oral clearance were compared between the two groups. The efficacy and severity of adverse events were also compared. The results showed that patients who discontinued or modified treatment had low plasma concentrations of lenalidomide and C/D ratios, indicating high oral clearance of lenalidomide. The estimated creatinine clearance rate was negatively correlated with the C/D ratio. The plasma concentrations of lenalidomide were independent from kidney function and differed significantly among patients. Taken together, the results indicate that low plasma concentrations of lenalidomide and low C/D ratios may lead to discontinuation of combination therapy in patients with MM. This suggests that early measurement of lenalidomide plasma continuation would help to prevent discontinuation of therapy or a delay in modifying the dose of lenalidomide.


Assuntos
Dexametasona/administração & dosagem , Lenalidomida/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimioterapia Combinada , Feminino , Humanos , Lenalidomida/efeitos adversos , Lenalidomida/sangue , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade
20.
J Nat Med ; 74(4): 689-701, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535872

RESUMO

From the methanolic extract of the aerial parts of Petasites japonicus, six new eremophilane-type sesquiterpenoids, petasitesterpenes I-VI were isolated together with eight known compounds including S-japonin and eremophilenolide. The chemical structures of the isolated new compounds were elucidated based on chemical/physicochemical evidence. For petasitesterpenes I and II, the absolute configurations were established by comparison of experimental and predicted electronic circular dichroism (ECD) data. Among the isolated compounds, petasitesterpenes I, II, VI, and S-japonin showed cytotoxic activity against both human astrocytoma U-251MG cancer cells (non-CSCs) and their cancer stem cells (CSCs) isolated by sphere formation. In addition, cytotoxic activities of these compounds against breast cancer MDA-MB-231 were evaluated, supporting that petasitesterpene II has more effective than other isolated compounds.


Assuntos
Células-Tronco Neoplásicas/química , Petasites/química , Plantas Medicinais/química , Sesquiterpenos/química , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA