Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648067

RESUMO

We recently reported that resistance to PD-1-blockade in a refractory lung cancer-derived model involved increased collagen deposition and the collagen-binding inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), and thus we hypothesized that LAIR1 and collagen cooperated to suppress therapeutic response. Here, we report LAIR1 is associated with tumor stroma and is highly expressed by intratumoral myeloid cells in both human tumors and mouse models of cancer. Stroma-associated myeloid cells exhibit a suppressive phenotype and correlate with LAIR1 expression in human cancer. NGM438, a novel humanized LAIR1 antagonist monoclonal antibody, elicits myeloid inflammation and allogeneic T cell responses by binding to LAIR1 and blocking collagen engagement. Further, a mouse-reactive NGM438 surrogate antibody sensitized refractory KP mouse lung tumors to anti-PD-1 therapy and resulted in increased intratumoral CD8+ T cell content and inflammatory gene expression. These data place LAIR1 at the intersection of stroma and suppressive myeloid cells and support the notion that blockade of the LAIR1/collagen axis can potentially address resistance to checkpoint inhibitor therapy in the clinic.

2.
Cancer Immunol Res ; 12(5): 592-613, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393969

RESUMO

Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.


Assuntos
Antígenos CD , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Glicoproteínas de Membrana , Células Mieloides , Receptores Imunológicos , Microambiente Tumoral , Receptores Imunológicos/metabolismo , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo
3.
PLoS One ; 4(7): e6191, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19593386

RESUMO

Precise regulation of Wnt signaling is important in many contexts, as in development of the vertebrate forebrain, where excessive or ectopic Wnt signaling leads to severe brain defects. Mutation of the widely expressed oto gene causes loss of the anterior forebrain during mouse embryogenesis. Here we report that oto is the mouse ortholog of the gpi deacylase gene pgap1, and that the endoplasmic reticulum (ER)-resident Oto protein has a novel and deacylase-independent function during Wnt maturation. Oto increases the hydrophobicities of Wnt3a and Wnt1 by promoting the addition of glycophosphatidylinositol (gpi)-like anchors to these Wnts, which results in their retention in the ER. We also report that oto-deficient embryos exhibit prematurely robust Wnt activity in the Wnt1 domain of the early neural plate. We examine the effect of low oto expression on Wnt1 in vitro by knocking down endogenous oto expression in 293 and M14 melanoma cells using shRNA. Knockdown of oto results in increased Wnt1 secretion which is correlated with greatly enhanced canonical Wnt activity. These data indicate that oto deficiency increases Wnt signaling in vivo and in vitro. Finally, we address the mechanism of Oto-mediated Wnt retention under oto-abundant conditions, by cotransfecting Wnt1 with gpi-specific phospholipase D (GPI-PLD). The presence of GPI-PLD in the secretory pathway results in increased secretion of soluble Wnt1, suggesting that the gpi-like anchor lipids on Wnt1 mediate its retention in the ER. These data now provide a mechanistic framework for understanding the forebrain defects in oto mice, and support a role for Oto-mediated Wnt regulation during early brain development. Our work highlights a critical role for ER retention in regulating Wnt signaling in the mouse embryo, and gives insight into the notoriously inefficient secretion of Wnts.


Assuntos
Retículo Endoplasmático/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosfolipase D/metabolismo , Reação em Cadeia da Polimerase
4.
Dev Biol ; 287(2): 378-89, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16229832

RESUMO

Sonic Hedgehog (Shh) signals are transduced into nuclear ratios of Gli transcriptional activator versus repressor. The initial part of this process is accomplished by Shh acting through Patched (Ptc) to regulate Smoothened (Smo) activity. The mechanisms by which Ptc regulates Smo, and Smo activity is transduced to processing of Gli proteins remain unclear. Recently, a forward genetic approach in mice identified a role for intraflagellar transport (IFT) genes in Shh signal transduction, downstream of Patched (Ptc) and Rab23. Here, we show that the retrograde motor for IFT is required in the mouse for the phenotypic expression of both Gli activator and repressor function and for effective proteolytic processing of Gli3. Furthermore, we show that the localization of Smo to primary cilia is disrupted in mutants. These data indicate that primary cilia act as specialized signal transduction organelles required for coupling Smo activity to the biochemical processing of Gli3 protein.


Assuntos
Cílios/metabolismo , Dineínas/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas Motores Moleculares/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Padronização Corporal , Cílios/ultraestrutura , Dineínas/genética , Extremidades/embriologia , Flagelos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Microscopia Eletrônica de Varredura , Proteínas Motores Moleculares/genética , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/anormalidades , Prosencéfalo/embriologia , Transporte Proteico/genética , Receptor Smoothened , Medula Espinal/anormalidades , Medula Espinal/embriologia , Transativadores/fisiologia , Proteína Gli3 com Dedos de Zinco
5.
Gene ; 307: 51-62, 2003 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-12706888

RESUMO

Striking conservation in various organisms suggests that cellular nucleic acid-binding protein (CNBP) plays a fundamental biological role across different species. However, the regulated expression and physiological properties of the CNBP gene are unknown. In this study, we report the molecular cloning, promoter characterization, developmental expression and functional analysis of the mouse CNBP gene. The gene contains five exons and is localized to chromosome 6 in the region corresponding to band 6 D1-D2. Primer extension assay indicates that the transcription start site is located 230 bp upstream of the initiator Met codon. Our promoter analysis indicates that strong transcription enhancer and silencer regions lie within the 1.6 kb proximal region of the promoter and the upstream -3.0 to -1.6 kb region, respectively. The promoter activity is 10 fold higher in embryonic carcinoma cells than that in fibroblast, as determined by CAT assay. Consistent with its function as a transcription factor, CNBP protein is located in the nucleus of cells. During mouse embryogenesis, CNBP is expressed in the anterior region of the early embryo and in the limb, tail and craniofacial region. Overexpression of CNBP strongly stimulates cell proliferation and increases c-myc promoter activity. Our finds suggest that CNBP may play an important role in cell proliferation and tissue patterning during anterior-posterior axis, craniofacial and limb development by targeting c-Myc.


Assuntos
Proteínas de Ligação a DNA/genética , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA , Animais , Sequência de Bases , Northern Blotting , Divisão Celular/genética , Linhagem Celular , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Embrião de Mamíferos/metabolismo , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Genes/genética , Hibridização In Situ , Hibridização in Situ Fluorescente , Íntrons , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-myc/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Sítio de Iniciação de Transcrição , Transfecção , Células Tumorais Cultivadas
6.
Development ; 130(7): 1367-79, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12588852

RESUMO

Mouse mutants have allowed us to gain significant insight into axis development. However, much remains to be learned about the cellular and molecular basis of early forebrain patterning. We describe a lethal mutation mouse strain generated using promoter-trap mutagenesis. The mutants exhibit severe forebrain truncation in homozygous mouse embryos and various craniofacial defects in heterozygotes. We show that the defects are caused by disruption of the gene encoding cellular nucleic acid binding protein (CNBP); Cnbp transgenic mice were able to rescue fully the mutant phenotype. Cnbp is first expressed in the anterior visceral endoderm (AVE) and, subsequently, in the anterior definitive endoderm (ADE), anterior neuroectoderm (ANE), anterior mesendoderm (AME), headfolds and forebrain. In Cnbp(-/-) embryos, the visceral endoderm remains in the distal tip of the conceptus and the ADE fails to form, whereas the node and notochord form normally. A substantial reduction in cell proliferation was observed in the anterior regions of Cnbp(-/-) embryos at gastrulation and neural-fold stages. In these regions, Myc expression was absent, indicating CNBP targets Myc in rostral head formation. Our findings demonstrate that Cnbp is essential for the forebrain induction and specification.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Prosencéfalo/embriologia , Proteínas de Ligação a RNA , Dedos de Zinco/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Ectoderma/metabolismo , Ectoderma/patologia , Endoderma/metabolismo , Endoderma/patologia , Marcação de Genes , Genes Letais , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Camundongos Transgênicos , Mutação , Prosencéfalo/anormalidades , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
7.
Int J Dev Biol ; 46(2): 243-53, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11934153

RESUMO

Bone morphogenetic proteins (BMPs) signal via complexes of type I and type II receptors. In this study, we mapped the expression of type IA, type IB and type II receptors during craniofacial chondrogenesis and then perturbed receptor function in vivo with retroviruses expressing dominant-negative or constitutively active type I receptors. BmprIB was the only receptor expressed within all cartilages. BmprIA was initially expressed in cartilage condensations, but later decreased within cartilage elements. BmprII was expressed at low levels in the nasal septum and prenasal cartilage and at higher levels in other craniofacial cartilages. The maxillary prominence, which gives rise to several intramembranous bones, expressed both type I receptors. Misexpression of dnBMPRIB decreased the size of cartilages and bones on the treated side. In contrast, dnBMPRIA had no effect on the skeletal phenotype. The phenotypes of caBMPRIA and caBMPRIB were similar; both led to overgrowth of cartilage elements, thinner bones with fewer trabeculae and inhibition of feather development. Infection with constitutively active viruses resulted in ectopic expression of Msx1, Msx2 and Fgfr2 throughout the maxillary mesenchyme. These data suggest that the pattern of trabeculation in membranous bones derived from the maxillary prominence was related to the change in expression pattern and that Msx and Fgfr2 genes were downstream of both type I BMP receptors. We conclude that the requirement for the type IB is greater than for the type IA receptor but, when active, both receptors play similar roles in regulating bone, cartilage and feather formation in the skull.


Assuntos
Osso e Ossos/fisiologia , Condrócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento/química , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais , Fatores de Transcrição , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Osso e Ossos/embriologia , Cartilagem/embriologia , Diferenciação Celular , Embrião de Galinha , Proteínas de Ligação a DNA/metabolismo , Ectoderma/citologia , Plumas/embriologia , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Fator de Transcrição MSX1 , Fenótipo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Retroviridae/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA